Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis (original) (raw)
Related papers
Biochemical and Biophysical Research Communications, 2006
Epidemiologic studies suggest that low to moderate consumption of red wine is inversely associated with the risk of coronary heart disease; the protection is in part attributed to grape-derived polyphenols, notably trans-resveratrol, present in red wine. It is not clear whether the cardioprotective effects of resveratrol can be reproduced by standardized grape extracts (SGE). In the present studies, we determined, using cultured human aortic smooth muscle cells (HASMC), growth and specific gene responses to resveratrol and SGE provided by the California Table Grape Commission. Suppression of HASMC proliferation by resveratrol was accompanied by a dose-dependent increase in the expression of tumor suppressor gene p53 and heat shock protein HSP27. Using resveratrol affinity chromatography and biochemical fractionation procedures, we showed by immunoblot analysis that treatment of HASMC with resveratrol increased the expression of quinone reductase I and II, and also altered their subcellular distribution. Growth of HASMC was significantly inhibited by 70% ethanolic SGE; however, gene expression patterns in various cellular compartments elicited in response to SGE were substantially different from those observed in resveratrol-treated cells. Further, SGE also differed from resveratrol in not being able to induce relaxation of rat carotid arterial rings. These results indicate that distinct mechanisms are involved in the regulation of HASMC growth and gene expression by SGE and resveratrol.
Effects of resveratrol and other wine polyphenols on vascular function: an update
The Journal of Nutritional Biochemistry, 2011
Several epidemiologic observations show that moderate wine drinking reduces cardiovascular morbidity and mortality. Wine contains several polyphenols, and among them, resveratrol in particular has been shown to exert a number of important biologic activities on the cardiovascular system that may contribute to the protective effects of wine. The mechanisms through which resveratrol and other wine polyphenols protect from ischemic cardiovascular events are many, but protection from oxidative stress and radical oxygen species production, a facilitating activity on nitric oxide production and activity and the ability to modulate the expression of adhesive molecules by blood cells and the vascular wall seem to be the most important. In this overview, the in vitro and in vivo evidence on the activity of resveratrol on vascular function and circulating blood cells, with a special emphasis on blood platelets, is thoroughly presented.
Clinica Chimica Acta, 2006
Background: Resveratrol, a polyphenolic constituent of red wine, has antioxidant effects. However, its protective effects against oxLDLinduced endothelial injury remained unclarified. Methods: Primary human umbilical vein endothelial cell cultures (HUVECs) treated with oxLDL (200 Ag/ml) were used to explore the protective effect of resveratrol. Cytotoxicity of oxLDL on HUVECs was studied by measuring lactate dehydrogenase (LDH) release, methylthiazol tetrazolium (MTT) and apoptotic cell death as characterized by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) stain. We also measured the production of reactive oxygen species (ROS) by using the fluorescnet probe 2V , 7Vdichlorofluorescein acetoxymethyl ester (DCF-AM), and observed the activity of antioxidant enzymes. Furthermore, several apoptotic signaling pathway with increased cytosolic calcium, alteration of mitochondrial membrane potential, cytochrome c release and activation of caspase 3 were also investigated. Results: Resveratrol attenuated oxLDL-induced cytotoxicity, apoptotic features, generation of ROS and intracellular calcium accumulation. OxLDL-induced mitochondria membrane potential collapase, cytochrome c release and activation of caspase 3 in HUVECs were also suppressed by resveratrol pretreatment. Conclusions: Red wine intake may protect against oxLDL-induced dysfunction of endothelial cells.
The red wine polyphenol, resveratrol, exerts acute direct actions on guinea-pig ventricular myocytes
European Journal of Pharmacology, 2005
Epidemiological evidence suggests that moderate consumption of red wine may be cardioprotective, although the precise mechanism(s) responsible remains poorly understood. We hypothesized that the red wine polyphenol, resveratrol, may exert direct actions on the heart and thus potentially contribute to cardioprotection. We show that resveratrol acutely decreases Ca 2+ transient amplitude in isolated cardiac myocytes. Intriguingly, resveratrol simultaneously increases cell shortening in half the cells tested, while decreasing shortening in the other half. The former could be attributed to heightened myofilament Ca 2+ sensitivity. This was no longer observed in myocytes that had been incubated with the oestrogen receptor antagonist, ICI 182,780, suggesting an oestrogen-receptor dependent mechanism of action. In addition, resveratrol significantly decreased action potential duration and the peak L-type Ca 2+ current. Our findings provide evidence that resveratrol exerts multiple direct actions on cardiac myocytes, the net result of which is no overall change in cell contraction. The clinical significance of these results remains to be determined. D
Journal of Functional Foods, 2017
Resveratrol the polyphenolic antioxidant molecule has been proposed as an effective agent in the prevention of several pathological conditions, thus this study was aimed to evaluate its chronic effects on functional and structural remodeling of the aorta in spontaneously (SHR) and malignantly hypertensive rats (MHR). Resveratrol significantly decreased arterial pressure and improved regional hemodynamic parameters, bioavailability of nitric oxide, ameliorated morphological changes in the tunica media and smooth muscle of the aorta, preserved endothelium, reduced inflammation and apoptosis in both SHR and MHR, but excrete more beneficial effects on SHR. Resveratrol suppressed lipid peroxidation, significantly improved oxidative status and reduced levels of lipids. These results suggest the cardiovascular benefits of resveratrol dietary enrichment in both experimental models of hypertension.
Biomedicines
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Resveratrol and Its Effects on the Vascular System
International Journal of Molecular Sciences, 2019
Resveratrol, the phenolic substance isolated initially from Veratrum grandiflorum and richly present in grapes, wine, peanuts, soy, and berries, has been attracting attention of scientists and medical doctors for many decades. Herein, we review its effects on the vascular system. Studies utilizing cell cultures and pre-clinical models showed that resveratrol alleviates oxidative stress and inflammation. Furthermore, resveratrol suppresses vascular smooth muscle cell proliferation, promotes autophagy, and has been investigated in the context of vascular senescence. Pre-clinical models unambiguously demonstrated numerous vasculoprotective effects of resveratrol. In clinical trials, resveratrol moderately diminished systolic blood pressure in hypertensive patients, as well as blood glucose in patients with diabetes mellitus. Yet, open questions remain, as exemplified by a recent report which states that the intake of resveratrol might blunt certain positive effects of exercise in older...
Journal of Agricultural and Food Chemistry, 2012
The presence of grape and wine polyphenol resveratrol (RES) in the diet is negligible. Therefore, the cardiovascular benefits of this molecule, in a dietary context, remain to be established. We aimed to investigate, through dietary intervention, the effects of a resveratrol-rich grape extract (GE-RES) on the prevention of early aortic lesions in pigs fed an atherogenic diet (AD). These effects were compared with those produced by a grape extract lacking RES (GE) or RES alone. Pigs fed the AD for 4 months showed early atherosclerotic lesions in the thoracic aorta: degeneration and fragmentation of elastic fibers, increase of intima thickness, subendothelial fibrosis, and accumulation of fatty cells and anion superoxide radicals. GE-RES was the most effective treatment and prevented the disruption of aortic elastic fibers, decreased their alteration (57%), and reduced the intima thickness (33%) and the accumulation of fatty cells (42%) and O 2
Red wine and Resveratrol, their effect on human health
2023
Based on several in vitro and in vivo studies, it appears that a certain amount of daily consumption of wine can prevent to some degree various chronic diseases. This is mainly due to the presence and number of important antioxidants in red wine. Wine polyphenols, especially resveratrol, anthocyanins and catechins, are the most effective antioxidants in wine. Resveratrol is thought to help prevent cardiovascular disease by neutralizing free radicals but also protecting the nervous system and other organs. The term "French Paradox" is used to describe the relatively low incidence of cardiovascular disease in the French population despite the high consumption of fats. However, in the case of heavy wine consumption, ethanol limits the benefits of the action of polyphenols in wine. From the literature review it appears that the combined-synergistic effect of wine phenols is superior to their individual action. Resveratrol requires red wine polyphenols for optimal antioxidant activity. Research has shown some positive effects, but several more studies are needed to draw safe conclusions as not many clinical trials have been performed in humans. Advances in technology have enabled new techniques to recover the valuable ingredients of red wine from by-products of vinification for their use in pharmacy and cosmetology. Consumers are now looking for