Learning Online Multi-sensor Depth Fusion (original) (raw)

NeuralFusion: Online Depth Fusion in Latent Space

Martin R. Oswald

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

View PDFchevron_right

Learned Semantic Multi-Sensor Depth Map Fusion

Martin R. Oswald

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019

View PDFchevron_right

RoutedFusion: Learning Real-Time Depth Map Fusion

Martin R. Oswald

2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

View PDFchevron_right

Multi-Sensor Depth Fusion Framework for Real-Time 3D Reconstruction

farhan khan

IEEE Access, 2019

View PDFchevron_right

HeteroFusion: Dense Scene Reconstruction Integrating Multi-Sensors

beichen li

IEEE Transactions on Visualization and Computer Graphics, 2019

View PDFchevron_right

Multi-sensor large-scale dataset for multi-view 3D reconstruction

Ruslan Rakhimov

arXiv (Cornell University), 2022

View PDFchevron_right

DIODE: A Dense Indoor and Outdoor DEpth Dataset

Falcon Dai

arXiv (Cornell University), 2019

View PDFchevron_right

3DFS: Deformable Dense Depth Fusion and Segmentation for Object Reconstruction from a Handheld Camera

Tanmay Gupta

ArXiv, 2016

View PDFchevron_right

Depth map fusion with camera position refinement

Radim Tylecek, Radim Sara, Radim Šára

2009

View PDFchevron_right

A Critical Review of Deep Learning-Based Multi-Sensor Fusion Techniques

Hamid Bahai

Sensors

View PDFchevron_right

Improving 3D Reconstruction using Deep Learning Priors

Rohan Chabra

2020

View PDFchevron_right

DFineNet: Ego-Motion Estimation and Depth Refinement from Sparse, Noisy Depth Input with RGB Guidance

Yilun Zhang

arXiv (Cornell University), 2019

View PDFchevron_right

Multimodal Fusion of Deeply Inferred Point Clouds for 3D Scene Reconstruction Using Cross-Entropy ICP

Paramate Horkaew

IEEE Access

View PDFchevron_right

Unsupervised Depth Completion with Calibrated Backprojection Layers

Alex Wong

2021 IEEE/CVF International Conference on Computer Vision (ICCV)

View PDFchevron_right

MonoFusion: Real-time 3D Reconstruction of Small Scenes with a Single Web Camera

Siddartha Reddy

View PDFchevron_right

HDR-Net-Fusion: Real-time 3D dynamic scene reconstruction with a hierarchical deep reinforcement network

Yan-Pei Cao

Computational Visual Media, 2021

View PDFchevron_right

Atlas: End-to-End 3D Scene Reconstruction from Posed Images

Ayan sinha

Computer Vision – ECCV 2020, 2020

View PDFchevron_right

Incremental dense multi-modal 3D scene reconstruction

patrick perez

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015

View PDFchevron_right

UniFuse: Unidirectional Fusion for 360° Panorama Depth Estimation

Zilong Dong

IEEE Robotics and Automation Letters, 2021

View PDFchevron_right

Self-Supervised Depth Completion for Active Stereo

Frederik Warburg

ArXiv, 2021

View PDFchevron_right

RGBD-fusion: Real-time high precision depth recovery

Ron Kimmel

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015

View PDFchevron_right

Towards Raw Sensor Fusion in 3D Object Detection

Viktor Remeli

IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2019), 2019

View PDFchevron_right

VOICED: Depth Completion from Inertial Odometry and Vision

Xiaohan Fei

2019

View PDFchevron_right

Multi-view image and ToF sensor fusion for dense 3D reconstruction

Jana Kosecka

2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 2009

View PDFchevron_right

Pixel weighted average strategy for depth sensor data fusion

Frederic Garcia, Björn Ottersten, Bruno Mirbach

IEEE International Conference on Image Processing (ICIP), 2010

View PDFchevron_right

Interactive registration method for 3D data fusion

Arantxa Casanova

2016 International Conference on 3D Imaging (IC3D), 2016

View PDFchevron_right

Depth distillation: unsupervised metric depth estimation for UAVs by finding consensus between kinematics, optical flow and deep learning

Alina Marcu

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021

View PDFchevron_right

Learning to combine depth and motion

Kishore Konda

View PDFchevron_right

GeoRefine: Self-supervised Online Depth Refinement for Accurate Dense Mapping

Qingan Yan

Lecture Notes in Computer Science, 2022

View PDFchevron_right

3d object reconstruction with heterogeneous sensor data

Marc Pollefeys

2008

View PDFchevron_right

ARKitScenes - A Diverse Real-World Dataset For 3D Indoor Scene Understanding Using Mobile RGB-D Data

afshin dehghan

ArXiv, 2021

View PDFchevron_right

Pano3D: A Holistic Benchmark and a Solid Baseline for 360° Depth Estimation

Petros Drakoulis

2021

View PDFchevron_right

DeepDNet: Deep Dense Network for Depth Completion Task

girish hegde

2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021

View PDFchevron_right

Joint Depth and Normal Estimation from Real-world Time-of-flight Raw Data

rongrong gao

arXiv (Cornell University), 2021

View PDFchevron_right

Robust Multimodal Depth Estimation using Transformer based Generative Adversarial Networks

Fahim Faysal Khan

Proceedings of the 30th ACM International Conference on Multimedia

View PDFchevron_right