Flexural strength of monolithic zirconia: Effect of finishing/polishing procedures (original) (raw)
Related papers
Materials, 2016
The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx 2 (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods were applied: either dry polishing before sintering or wet polishing after sintering. Each subgroup included 40 specimens. The surface roughness was assessed using scanning electron microscopy (SEM) and a profilometer whereas monoclinic phase transformation was investigated with X-ray diffraction. The data were analyzed using a three-way Analysis of Variance (ANOVA) with respect to the three factors: zirconia, specimen preparation, and test method. One-way ANOVA was conducted for the test method and zirconia factors within the combination of two other factors. A 2-parameter Weibull distribution assumption was applied to analyze the reliability under different testing conditions. In general, values measured using the 4-point test method presented the lowest flexural strength values. The flexural strength findings can be grouped in the following order: 4-point < 3-point < biaxial. Specimens prepared after sintering showed significantly higher flexural strength values than prepared before sintering. The Weibull moduli ranged from 5.1 to 16.5. Specimens polished before sintering showed higher surface roughness values than specimens polished after sintering. In contrast, no strong impact of the polishing procedures on the monoclinic surface layer was observed. No impact of zirconia material on flexural strength was found. The test method and the preparation method significantly influenced the flexural strength values.
Biaxial Flexural Strength of Different Monolithic Zirconia upon Post-Sintering Processes
European Journal of Dentistry
Objective Different post-sintering processes are expected to be a reason for alteration in the strength of zirconia. This study evaluated the effect of post-sintering processes on the flexural strength of different types of monolithic zirconia. Materials and Methods A total of 120 classical- (Cz) and high-translucent (Hz) monolithic zirconia discs (1.2 mm thickness and 14 mm in Ø) were prepared, sintered, and randomly divided into four groups to be surface-treated with (1) as-glazed (AG); (2) finished and polished (FP); (3) finished, polished, and overglazed (FPOG); and (4) finished, polished, and heat-treated (FPHT) technique (n = 15). Biaxial flexural strength (σ) was determined on a piston-on-three ball in a universal testing machine at a speed of 0.5 mm/min. Statistical Analysis Analysis of variance, and post hoc Bonferroni multiple comparisons were determined for significant differences (α = 0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and ...
Journal of the Mechanical Behavior of Biomedical Materials, 2016
OBJECTIVES: To test the mechanical and optical properties of monolithic zirconia in comparison to conventional zirconia. MATERIALS AND METHODS: Specimens were prepared from: monolithic zirconia: Zenostar (ZS), DD Bio ZX2 hochtransluzent (DD), Ceramill Zolid (CZ), InCoris TZI (IC) and a conventional zirconia Ceramill ZI (CZI). Contrast ratio (N=75/n=15) was measured according to ISO 2471:2008. Grain sizes (N=75/n=15) were investigated with scanning electron microscope. Fourpoint flexural strength (N=225/n=15/zirconia and aging regime) was measured initially, after aging in autoclave or chewing simulator (ISO 13356:2008). Two-body wear of polished and glazed/veneered specimens (N=108/n=12) was analyzed in a chewing simulator using human teeth as antagonists. Data were analyzed using 2-/1-way ANOVA with post-hoc Scheffé, Kruskal-Wallis-H, Mann-Whitney-U, Spearman-Rho, Weibull statistics and linear mixed models (p<0.05). RESULTS: The lowest contrast ratio values were found for ZS and IC and CZ. IC showed the largest grain size followed by DD and CZI. The smallest grain size was observed for ZS followed by CZ. There was no correlation between grain size and contrast ratio. The aging regime showed no impact on flexural strength. All non-aged and autoclave-aged specimens showed lower flexural strengths than the control group CZI. Within groups aged in chewing simulator, ZS showed significantly lower flexural strength than CZI. CZI showed higher material and antagonist wear than monolithic polished and glazed groups. Glazed specimens showed higher material and antagonist loss compared to polished ones. There was no correlation between roughness and wear. CONCLUSIONS: Monolithic zirconia showed higher optical, but lower mechanical properties than conventional zirconia.
Influence of heating rate on the flexural strength of monolithic zirconia
The Journal of Advanced Prosthodontics, 2019
PURPOSE. Fabrication of zirconia restorations with ideal mechanical properties in a short period is a great challenge for clinicians. The purpose of the study was to investigate the effect of heating rate on the mechanical and microstructural properties of monolithic zirconia. MATERIALS AND METHODS. Forty monolithic zirconia specimens were prepared from presintered monolithic zirconia blanks. All specimens were then assigned to 4 groups according to heating rate as Control, Group 15°C, Group 20°C, and Group 40°C. All groups were sintered according to heating rates with the sintering temperature of 1500°C, a holding time of 90 minutes and natural cooling. The phase composition was examined by XRD analysis, three-point bending test was conducted to examine the flexural strength, and Weibull analysis was conducted to determine weibull modulus and characteristic strength. Average grain sizes were determined by SEM analysis. One-way ANOVA test was performed at a significance level of 0.05. RESULTS. Only tetragonal phase characteristic peaks were determined on the surface of analyzed specimens. Differences among the average grain sizes of the groups were not statistically significant. The results of the three-point bending test revealed no significant differences among the flexural strength of the groups (P>.05). Weibull modulus of groups was ranging from 3.50 to 4.74. The highest and the lowest characteristic strength values were obtained in Group 20°C and Control Group, respectively. CONCLUSION. Heating rate has no significant effect on the flexural strength of monolithic zirconia. Monolithic zirconia restorations can be produced in shorter sintering periods without affecting the flexural strength by modifying the heating rate.
Zirconia ceramic strength and weaknesses
Metal ceramic restorations were considered the gold standard as reliable materials. Increasing demand for esthetics supported the commercialization of new metal free restorations. A growing demand is rising for zirconia prostheses. Peer-reviewed articles published till July 2013 were identified through a Medline (Pubmed and Elsevier). Emphasizing was made on zirconia properties and applications. Zirconia materials are able to withstand posterior physiologic loads. Although zirconia cores are considered as reliable materials, these restorations are not problem free.