Assessment of 3D-Printed Polycaprolactone, Hydroxyapatite Nanoparticles and Diacrylate Poly(ethylene glycol) Scaffolds for Bone Regeneration (original) (raw)
Related papers
Polymers
The development of advanced biomaterials and manufacturing processes to fabricate biologically and mechanically appropriate scaffolds for bone tissue is a significant challenge. Polycaprolactone (PCL) is a biocompatible and degradable polymer used in bone tissue engineering, but it lacks biofunctionalization. Bioceramics, such as hydroxyapatite (HA) and β tricalcium phosphate (β-TCP), which are similar chemically to native bone, can facilitate both osteointegration and osteoinduction whilst improving the biomechanics of a scaffold. Carbon nanotubes (CNTs) display exceptional electrical conductivity and mechanical properties. A major limitation is the understanding of how PCL-based scaffolds containing HA, TCP, and CNTs behave in vivo in a bone regeneration model. The objective of this study was to evaluate the use of three-dimensional (3D) printed PCL-based composite scaffolds containing CNTs, HA, and β-TCP during the initial osteogenic and inflammatory response phase in a critical ...
Bone tissue engineering has been developed in the past decades, with the engineering of bone substitutes on the vanguard of this regenerative approach. PCL based scaffolds are fairly applied for bone regeneration, and several composites have been incorporated, as to improve the devices’ mechanical properties and tissue ingrowth. In this study, HA was incorporated on PCL based scaffolds with two different proportions, 80:20 and 60:40. Devices were produced with two different techniques, SC and MB, and further investigated with regards to their mechanical characteristics and in vitro cytocompatibility. Results show the MB devices to present more promising mechanical properties, along with the incorporation of HA. The latter is also related to an increase in osteogenic activity and promotion. Overall, this study suggest PCL:HA scaffolds to be promising candidates for bone tissue engineering, particularly when produced by the MB method.
Journal of Materials Science: Materials in Medicine, 2022
Controlled pore size and desirable internal architecture of bone scaffolds play a significant role in bone regeneration efficiency. In addition to choosing appropriate materials, the manufacturing method is another significant factor in fabricating the ideal scaffold. In this study, scaffolds were designed and fabricated by the fused filament fabrication (FFF) technique. Polycaprolactone (PCL) and composites films with various percentages of hydroxyapatite (HA) (up to 20%wt) were used to fabricate filaments. The influence of (HA) addition on the mechanical properties of filaments and scaffolds was investigated. in vitro biological evaluation was examined as well as the apatite formation in simulated body fluid (SBF). The addition of HA particles increased the compressive strength and Young’s modulus of filaments and consequently the scaffolds. Compared to PCL, Young’s modulus of PCL/HA20% filament and three-dimensional (3D) printed scaffold has increased by 30% and 50%, respectively...
Polymers, 2021
The 3D-printed bioactive ceramic incorporated Poly(ε-caprolactone) (PCL) scaffolds show great promise as synthetic bone graft substitutes. However, 3D-printed scaffolds still lack adequate surface properties for cells to be attached to them. In this study, we modified the surface characteristics of 3D-printed poly(ε-caprolactone)/hydroxyapatite scaffolds using O2 plasma and sodium hydroxide. The surface property of the alkaline hydrolyzed and O2 plasma-treated PCL/HA scaffolds were evaluated using field-emission scanning microscopy (FE-SEM), Alizarin Red S (ARS) staining, and water contact angle analysis, respectively. The in vitro behavior of the scaffolds was investigated using human dental pulp-derived stem cells (hDPSCs). Cell proliferation of hDPSCs on the scaffolds was evaluated via immunocytochemistry (ICC) and water-soluble tetrazolium salt (WST-1) assay. Osteogenic differentiation of hDPSCs on the scaffolds was further investigated using ARS staining and Western blot analys...
Journal of Biomedical Materials Research Part A, 2010
Polycaprolactone (PCL) is a synthetic biodegradable polymer that has been approved for use as bone graft substitutes. In this study, PCL scaffolds incorporating hydroxyapatite (HAp) particles were fabricated by combined solvent casting and particulate leaching techniques. The average pore dimension was in the range of about 480-500 lm. The porosity, water absorption, and compressive modulus of the scaffold were evaluated. The responses of primary bone cells cultured on the PCL and PCL/HAp scaffolds were examined both in vitro and in vivo. In comparison with the cells grown on the PCL scaffold, those cultured on the PCL/HAp counterpart positively expressed the markers of osteogenic differentiation.
Journal of The Mechanical Behavior of Biomedical Materials, 2020
3D printing of polylactic acid (PLA) and hydroxyapatite (HA) or bioglass (BG) bioceramics composites is the most promising technique for artificial bone construction. However, HA and BG have different chemical composition as well as different bone regeneration inducing mechanisms. Thus, it is important to compare differentiation processes induced by 3D printed PLA þ HA and PLA þ BG scaffolds in order to evaluate the strongest osteoconductive and osteoinductive properties possessing bioceramics. In this study, we analysed porous PLA þ HA (10%) and PLA þ BG (10%) composites' effect on rat's dental pulp stem cells fate in vitro. Obtained results indicated, that PLA þ BG scaffolds lead to weaker cell adhesion and proliferation than PLA þ HA. Nevertheless, osteoinductive and other biofriendly properties were more pronounced by PLA þ BG composites. Overall, the results showed a strong advantage of bioceramic BG against HA, thus, 3D printed PLA þ BG composite scaffolds could be a perspective component for patient-specific, cheaper and faster artificial bone tissue production.
Polymers, 2020
Three-dimensional (3D) printing application is a promising method for bone tissue engineering. For enhanced bone tissue regeneration, it is essential to have printable composite materials with appealing properties such as construct porous, mechanical strength, thermal properties, controlled degradation rates, and the presence of bioactive materials. In this study, polycaprolactone (PCL), gelatin (GEL), bacterial cellulose (BC), and different hydroxyapatite (HA) concentrations were used to fabricate a novel PCL/GEL/BC/HA composite scaffold using 3D printing method for bone tissue engineering applications. Pore structure, mechanical, thermal, and chemical analyses were evaluated. 3D scaffolds with an ideal pore size (~300 µm) for use in bone tissue engineering were generated. The addition of both bacterial cellulose (BC) and hydroxyapatite (HA) into PCL/GEL scaffold increased cell proliferation and attachment. PCL/GEL/BC/HA composite scaffolds provide a potential for bone tissue engin...
A Bioactive Hydrogel and 3D Printed Polycaprolactone System for Bone Tissue Engineering
Gels
In this study, a hybrid system consisting of 3D printed polycaprolactone (PCL) filled with hydrogel was developed as an application for reconstruction of long bone defects, which are innately difficult to repair due to large missing segments of bone. A 3D printed gyroid scaffold of PCL allowed a larger amount of hydrogel to be loaded within the scaffolds as compared to 3D printed mesh and honeycomb scaffolds of similar volumes and strut thicknesses. The hydrogel was a mixture of alginate, gelatin, and nano-hydroxyapatite, infiltrated with human mesenchymal stem cells (hMSC) to enhance the osteoconductivity and biocompatibility of the system. Adhesion and viability of hMSC in the PCL/hydrogel system confirmed its cytocompatibility. Biomineralization tests in simulated body fluid (SBF) showed the nucleation and growth of apatite crystals, which confirmed the bioactivity of the PCL/hydrogel system. Moreover, dissolution studies, in SBF revealed a sustained dissolution of the hydrogel with time. Overall, the present study provides a new approach in bone tissue engineering to repair bone defects with a bioactive hybrid system consisting of a polymeric scaffold, hydrogel, and hMSC.
Journal of Biomedical Materials Research Part A, 2006
Polycaprolactone (PCL), a semicrystalline linear resorbable aliphatic polyester, is a good candidate as a scaffold for bone tissue engineering, due to its biocompatibility and biodegradability. However, the poor mechanical properties of PCL impair its use as scaffold for hard tissue regeneration, unless mechanical reinforcement is provided. To enhance mechanical properties and promote osteoconductivity, hydroxyapatite (HA) particles were added to the PCL matrix: three PCL-based composites with different volume ratio of HA (13%, 20%, and 32%) were studied. Mechanical properties and structure were analysed, along with biocompatibility and osteoconductivity. The addition of HA particles (in particular in the range of 20% and 32%) led to a significant improvement in mechanical performance (e.g., elastic modulus) of scaffold. Saos-2 cells and osteoblasts from human trabecular bone (hOB) retrieved during total hip replacement surgery were seeded onto 3D PCL samples for 1-4 weeks. Following the assessment of cell viability, proliferation, morphology, and ALP release, HA-loaded PCL was found to improve osteoconduction compared to the PCL alone. The results indicated that PCL represents a potential candidate as an efficient substrate for bone substitution through an accurate balance between structural/ mechanical properties of polymer and biological activities.
- Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits, Artificial Cells, Nanomedicine, and Biotechnology, 45:5, 961-968, ABSTRACT Segmental bone loss due to trauma, infection, and tumor resection and even non-union results in the vast demand for replacement and restoration of the function of the lost bone. The objective of this study is to utilize novel inorganic-organic nanocomposites for biomedical applications. Biodegradable implants have shown great promise for the repair of bone defects and have been commonly used as bone substitutes, which traditionally would be treated using metallic implants. In this study, 45 mature male New Zealand white rabbits 6-8 months and weighting 3-3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were done after an intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg), Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter -5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were colored and randomly divided into three experimental groups of nine animals each: Group 1 received medical pure nanocomposite polycaprolactone (PCL) granules, Group 2 received hydroxyapatite and Group 3 was a control group with no treatment. Histopathological evaluation was performed on days 15, 30 and 45 after surgery. On day 45 after surgery, the quantity of newly formed lamellar bone in the healing site in PCL group was better than onward compared with HA and control groups. Finally, nanocomposite PCL granules exhibited a reproducible bone-healing potential.