Phylogenetic analyses of the Lyophylleae (Agaricales, Basidiomycota) based on nuclear and mitochondrial rDNA sequences (original) (raw)

A higher-level phylogenetic classification of the Fungi

D. S. Hibbett). a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m y c r e s m y c o l o g i c a l r e s e a r c h 1 1 1 ( 2 0 0 7 ) 5 0 9 -5 4 7 Eumycota Lichens Molecular phylogenetics Mycota Nomenclature Systematics a b s t r a c t A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae.

A higher-level phylogenetic classification of the FungiCorresponding Editor:AFTOL Eumycota Lichens Molecular phylogenetics Mycota Nomenclature Systematics

D. S. Hibbett). a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m y c r e s m y c o l o g i c a l r e s e a r c h 1 1 1 ( 2 0 0 7 ) 5 0 9 -5 4 7 Eumycota Lichens Molecular phylogenetics Mycota Nomenclature Systematics a b s t r a c t A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae.

Plunging hands into the mushroom jar: a phylogenetic framework for Lyophyllaceae (Agaricales, Basidiomycota)

Genetica

During the last two decades, the unprecedented development of molecular phylogenetic tools has propelled an opportunity to revisit the fungal kingdom under an evolutionary perspective. Mycology has been profoundly changed but a sustained effort to elucidate large sections of the astonishing fungal diversity is still needed. Here we fill this gap in the case of Lyophyllaceae, a species-rich and ecologically diversified family of mushrooms. Assembly and genealogical concordance multigene phylogenetic analysis of a large dataset that includes original, vouchered material from expert field mycologists reveal the phylogenetic topology of the family, from higher (generic) to lower (species) levels. A comparative analysis of the most widely used phylogenetic markers in Fungi indicates that the nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS) and portions of the genes for RNA polymerase II second largest subunit (RPB2) is the most perform...

Phylogenetic relationships, taxonomic revision and new taxa of Termitomyces (Lyophyllaceae, Basidiomycota) inferred from combined nLSU- and mtSSU-rDNA sequences

Phytotaxa, 2017

In order to contribute to the taxonomic revision of several species of Termitomyces, sequences of 74 strains representing 28 taxa were used to generate a combined nLSU-mtSSU phylogenetic tree. The phylogenetic analysis showed that re-classification was required for 12 taxa originally misidentified under various names. The changes led to the use of 8 valid names for these 12 taxa, including two new forms: T. striatus f. subclypeatus and T. medius f. ochraceus; and a new combination: Termitomyces brunneopileatus according to their placement on various clades and subclades in the phylogenetic trees. Termitomyces letestui and T. medius were taxonomically revised. In addition, T. letestui collected from China is the first record from the Asian continent. This species was so far collected only in tropical Africa. Similarly, T. robustus is reported for the first time from Cameroon. Moreover, the phylogenetic analysis confirms T. subumkowaan as a new species that was originally described...

Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences

Systematic …, 2000

Phylogenetic relationships of mushrooms and their relatives within the order Agaricales were addressed by using nuclear large subunit ribosomal DNA sequences. Approximately 900 bases of the 59 end of the nucleus-encoded large subunit RNA gene were sequenced for 154 selected taxa representing most families within the Agaricales. Several phylogenetic methods were used, including weighted and equally weighted parsimony (MP), maximum likelihood (ML), and distance methods (NJ). The starting tree for branch swapping in the ML analyses was the tree with the highest ML score among previously produced MP and NJ trees. A high degree of consensus was observed between phylogenetic estimates obtained through MP and ML. NJ trees differed according to the distance model that was used; however, all NJ trees still supported most of the same terminal groupings as the MP and ML trees did. NJ trees were always significantly suboptimal when evaluated against the best MP and ML trees, by both parsimony and likelihood tests. Our analyses suggest that weighted MP and ML provide the best estimates of Agaricales phylogeny. Similar support was observed between bootstrapping and jackknifing methods for evaluation of tree robustness. Phylogenetic analyses revealed many groups of agaricoid fungi that are supported by moderate to high bootstrap or jackknife values or are consistent with morphology-based classification schemes. Analyses also support separate placement of the boletes and russules, which are basal to the main core group of gilled mushrooms (the Agaricineae of Singer). Examples of monophyletic groups include the families Amanitaceae, Coprinaceae (excluding Coprinus comatus and subfamily Panaeolideae), Agaricaceae (excluding the Cystodermateae), and Strophariaceae pro parte (Stropharia, Pholiota, and Hypholoma); the mycorrhizal species of Tricholoma (including Leucopaxillus, also mycorrhizal); Mycena and Resinomycena; Termitomyces, Podabrella, and Lyophyllum; and Pleurotus with Hohenbuehelia. Several groups revealed by these data to be nonmonophyletic include the families Tricholomataceae, Cortinariaceae, and Hygrophoraceae and the genera Clitocybe, Omphalina, and Marasmius. This study provides a framework for future systematics studies in the Agaricales and suggestions for analyzing large molecular data sets. {Fungal evolution; higher phylogeny; homobasidiomycete; large-scale molecular phylogeny; tree support.}

Myc Res 2007 Higher-level Fungi

D. S. Hibbett). a v a i l a b l e a t w w w . s c i e n c e d i r e c t . c o m j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / m y c r e s m y c o l o g i c a l r e s e a r c h 1 1 1 ( 2 0 0 7 ) 5 0 9 -5 4 7 Eumycota Lichens Molecular phylogenetics Mycota Nomenclature Systematics a b s t r a c t A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota, Neocallimastigomycota phyla nov.; Monoblepharidomycetes, Neocallimastigomycetes class. nov.; Eurotiomycetidae, Lecanoromycetidae, Mycocaliciomycetidae subclass. nov.; Acarosporales, Corticiales, Baeomycetales, Candelariales, Gloeophyllales, Melanosporales, Trechisporales, Umbilicariales ords. nov. The clade containing Ascomycota and Basidiomycota is classified as subkingdom Dikarya, reflecting the putative synapomorphy of dikaryotic hyphae.

Morphological and molecular analyses reveal two new species of Termitomyces (Agaricales, Lyophyllaceae) and morphological variability of T. intermedius

MycoKeys

Two new species, Termitomyces tigrinus and T. yunnanensis are described based on specimens collected from southwestern China. Termitomyces yunnanensis is morphologically characterized by a conspicuously venose pileus surface that is grey, olive grey, light grey to greenish grey at center, light grey towards margin, and a cylindrical white stipe. Termitomyces tigrinus is morphologically characterized by a densely tomentose to tomentose-squamulose pileus showing alternating greyish white and dark grey zones, and a stipe that is bulbous at the base. The two new species are supported by phylogenetic analyses of combined nuclear rDNA internal transcribed spacer ITS1-5.8S-ITS2 rDNA (ITS), the mitochondrial rDNA small subunit (mrSSU) and the nuclear rDNA large subunit (nrLSU). The morphological variability of T. intermedius, including five specimens newly collected from Yunnan Province, China, is also discussed. The collections showed variability in colour of the stipe surface and in the s...

Phylogenetic origins and family classification of typhuloid fungi, with emphasis on Ceratellopsis, Macrotyphula and Typhula (Basidiomycota)

Studies in Mycology, 2020

Typhuloid fungi are a very poorly known group of tiny clavarioid homobasidiomycetes. The phylogenetic position and family classification of the genera targeted here, Ceratellopsis, Macrotyphula, Pterula sensu lato and Typhula, are controversial and based on unresolved phylogenies. Our six-gene phylogeny with an expanded taxon sampling shows that typhuloid fungi evolved at least twice in the Agaricales (Pleurotineae, Clavariineae) and once in the Hymenochaetales. Macrotyphula, Pterulicium and Typhula are nested within the Pleurotineae. The type of Typhula (1818) and Sclerotium (1790), T. phacorrhiza and S. complanatum (synonym T. phacorrhiza), are encompassed in the Macrotyphula clade that is distantly related to a monophyletic group formed by species usually assigned to Typhula. Thus, the correct name for Macrotyphula (1972) and Typhula is Sclerotium and all Typhula species but those in the T. phacorrhiza group need to be transferred to Pistillaria (1821). To avoid undesirable nomenclatural changes, we suggest to conserve Typhula with T. incarnata as type. Clavariaceae is supported as a separate, early diverging lineage within Agaricales, with Hygrophoraceae as a successive sister taxon to the rest of the Agaricales. Ceratellopsis s. auct. is polyphyletic because C. acuminata nests in Clavariaceae and C. sagittiformis in the Hymenochaetales. Ceratellopsis is found to be an earlier name for Pterulicium, because the type, C. queletii, represents Pterulicium gracile (synonym Pterula gracilis), deeply nested in the Pterulicium clade. To avoid re-combining a large number of names in Ceratellopsis we suggest to conserve it with C. acuminata as type. The new genus Bryopistillaria is created to include C. sagittiformis. The families Sarcomyxaceae and Phyllotopsidaceae, and the suborder Clavariineae, are described as new. Six new combinations are proposed and 15 names typified.

Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa

Fungal Diversity, 2015

Electronic supplementary material The online version of this article (Abstract This paper is a compilation of notes on 142 fungal taxa, including five new families, 20 new genera, and 100 new species, representing a wide taxonomic and geographic range. The new families, Ascocylindricaceae, Caryosporaceae and Wicklowiaceae (Ascomycota) are introduced based on their distinct lineages and unique morphology. The new Pseudoasteromassaria (Latoruaceae) and Pseudomonodictys (Macrodiplodiopsidaceae) are introduced. The newly described species of Dothideomycetes (Ascomycota) are Pseudomassariosphaeria bromicola (Amniculicolaceae), Flammeascoma lignicola (Anteagloniaceae), Ascocylindrica m a r i n a ( A s c o c y l i n d r i c a c e a e ) , L e m b o s i a x y l i a e (Asterinaceae), Diplodia crataegicola and Diplodia galiicola ( B o t r y o s p h a e r i a c e a e ) , C a r y o s p o r a a q u a t i c a (Caryosporaceae), Heracleicola premilcurensis and N e o d i d y m e l l a t h a i l a n d i c u m ( D i d y m e l l a c e a e ) , Pseudopithomyces palmicola (Didymosphaeriaceae), Floricola viticola (Floricolaceae), Brunneoclavispora bambusae, Neolophiostoma pigmentatum and Sulcosporium thailandica (Halotthiaceae), Pseudoasteromassaria fagi (Latoruaceae), Keissleriella dactylidicola (Lentitheciaceae), Lophiohelichrysum helichrysi (Lophiostomataceae), A q u a s u b m e r s a j a p o n i c a ( L o p h i o t re m a t a c e a e ) , Pseudomonodictys tectonae (Macrodiplodiopsidaceae), Microthyrium buxicola and Tumidispora shoreae (Microthyriaceae), Alloleptosphaeria clematidis, Fungal Diversity luzulae, Nodulosphaeria senecionis, Ophiosphaerella aquaticus, Populocrescentia forlicesenensis and Vagicola vagans (Phaeosphaeriaceae), Elongatopedicellata lignicola, Roussoella magnatum and Roussoella angustior (Roussoellaceae) and Shrungabeeja longiappendiculata (Tetraploasphaeriaceae). The new combinations Pseudomassariosphaeria grandispora, Austropleospora a r c h i d e n d r i , P s e u d o p i t h o m y c e s c h a r t a r u m , Pseudopithomyces maydicus, Pseudopithomyces sacchari, Vagicola vagans, Punctulariopsis cremeoalbida and Punctulariopsis efibulata Dothideomycetes. The new genera Dictyosporella (Annulatascaceae), and Tinhaudeus (Halosphaeriaceae) are introduced in Sordariomycetes ( A s c o m y c o t a ) w h i l e D i c t y o s p o re l l a a q u a t i c a ( A n n u l a t a s c a c e a e ) , C h a e t o s p h a e r i a r i v u l a r i a (Chaetosphaeriaceae), Beauveria gryllotalpidicola and Beauveria loeiensis (Cordycipitaceae), Seimatosporium sorbi and Seimatosporium pseudorosarum (Discosiaceae), Colletotrichum aciculare, Colletotrichum fusiforme and Colletotrichum hymenocallidicola (Glomerellaceae), Tinhaudeus formosanus (Halosphaeriaceae), Pestalotiopsis subshorea and Pestalotiopsis dracaenea (Pestalotiopsiceae), Phaeoacremonium tectonae (Togniniaceae), Cytospora parasitica and Cytospora tanaitica (Val saceae), Annulohypoxylon palmicola, Biscogniauxia effusae and Nemania fusoideis (Xylariaceae) are introduced as novel species to order Sordariomycetes. The newly described species of Eurotiomycetes are Mycocalicium hyaloparvicellulum (Mycocaliciaceae). Acarospora septentrionalis and Acarospora castaneocarpa (Acarosporaceae), Chapsa multicarpa and Fissurina carassensis (Graphidaceae), Sticta fuscotomentosa and Sticta subfilicinella (Lobariaceae) are newly introduced in class Lecanoromycetes. In class Pezizomycetes, Helvella pseudolacunosa and Helvella rugosa (Helvellaceae) are introduced as new species. The new families, Dendrominiaceae and Neoantrodiellaceae Fungal Diversity