Predicting the tensile properties of additively manufactured Ti-6Al-4V via electron beam deposition (original) (raw)
Related papers
Predicting tensile properties of Ti-6Al-4V produced via directed energy deposition
Advanced manufacturing approaches, including additive manufacturing (i.e., " 3D printing ") of metallic structures requires a change to qualification strategies. One approach, informed qualification, integrates modeling strategies to make predictions of material characteristics, including the prediction of tensile properties for given chemistries and microstructures. In this work, constitutive equations are developed and presented that can predict the yield strength of additively manufactured Ti-6Al-4V subjected to one of three different heat-treatments: a stress relief anneal in the aþb phase field; a hot isostatic press treatment in the aþb phase field; and a b-anneal. The equations are nominally identical, though different strengthening mechanisms are active according to subtle microstructural differences. To achieve an equation that can predict the yield strength of the material, it is also necessary to include an assessment of dramatic reduction in the tensile strength due to texture (i.e., a " knock-down " effect). This has been experimentally measured, and included in this paper. The resulting predictions of yield strength are generally within 5% of their experimentally measured values.
Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties
MRS Bulletin
The capabilities of metal additive manufacturing (AM) are evolving rapidly thanks to both increasing industry demand and improved scientifi c understanding of the process. This article provides an overview of AM of the Ti-6Al-4V alloy, which has essentially been used as a yardstick to gauge the capability of each metal AM process developed to date. It begins by summarizing the metal AM processes existing today. This is followed by a discussion of the macro-and microstructural characteristics, defects, and tensile and fatigue properties of AM Ti-6Al-4V by selective laser melting, laser metal deposition (both powder and wire), and selective electron-beam melting compared to non-AM Ti-6Al-4V. The tensile and fatigue properties of as-built AM Ti-6Al-4V (with machined or polished surfaces) can be made comparable, or even superior, to those of Ti-6Al-4V in the most commonly used millannealed condition. However, these properties can exhibit a large degree of scatter and are often anisotropic, affected by AM build orientations. Post-AM surface treatments or both the post-AM surface and heat treatments are necessary to ensure the minimum required properties and performance consistency. Future directions to further unlock the potential of AM of Ti-6Al-4V for superior and consistent mechanical properties are also discussed.
Journal of Manufacturing and Materials Processing, 2022
To better support the transition to more industrial uses of additive manufacturing, this study examined the use of an Arcam Q20+ industrial 3D printer for producing heavily nested Ti-6Al-4V parts with both in-specification (IS) and out of specification (OS) oxygen content in reused grade 5 powder chemistries. Both the OS and IS powder chemistries were evaluated to understand their impact on build integrity and on static and fatigue performance. The results from our evaluations showed that controlling the bed preheat temperature in the Q20+ to relatively low values (326–556 °C) was effective in limiting microstructural coarsening during the long build time and enabled adequate/balanced performance vis à vis the tensile strength and ductility. Overall, the tensile properties of the IS Ti-6Al-4V material in the as-built and machined states fully met the requirements of ASTM F2924-14. By contrast, the ductility was compromised at oxygen levels above 0.2 wt.% (OS) in Ti-6Al-4V produced b...
Integrating Materials and Manufacturing Innovation
In this paper, phenomenological relationships are presented that permit the prediction of the plastic regime of stress–strain curves using a limited number of parameters. These relationships were obtained from both conventional (wrought + β annealed) and additively manufactured (i.e., “3D printed”) Ti-6Al-4V. Three different methods of additive manufacturing have been exploited to produce the materials, including large-volume electron beam additive manufacturing, large-volume laser hot wire additive manufacturing, and small-volume selective laser melting. The general fundamental expressions are independent not only of the additive manufacturing process, but also of a wide variety of post-deposition heat treatments, however the coefficients are specific to material states. Thus, this work demonstrates that it is possible to predict not only the ultimate tensile strength, but also the full true stress, true strain curves, if certain parameters of the material are known. In general, th...
Materials, 2020
Selective Electron Beam Additive Manufacturing (SEBAM) is a promising powder bed fusion additive manufacturing technique for titanium alloys that select particular area melting in different energy density for producing complexly shaped biomedical devices. For most commercial Ti6Al4V porous medical devices, the gradient energy density is usually applied to manufacture in one component during the SEBAM process which selects different energy density built on particular zones. This paper presents gradient energy density base characterization study on an SEBAM built rectangular specimen with a size of 3 mm × 20 mm × 60 mm. The specimen was divided into three zones were built in gradient energy density from 16 to 26.5 J/mm3. The microstructure and mechanical properties were investigated by means of scanning electron microscopy, X-ray diffraction, transmission electron microscopy and mechanical test. The α′ martensitic and lack of fusion were observed in the low energy density (LED) built ...
JOM, 2017
Selective electron beam melting (SEBM) is an established layer additive manufacturing or production process for small-to-medium-sized components of Ti-6Al-4V. Current literature data on SEBM of Ti-6Al-4V are, however, based principally on thin-section (<1¢¢; mostly<0.5¢¢) samples or components. In this research, 34-mm-thick (1.34¢¢) Ti-6Al-4V block samples were produced through use of default Arcam SEBM parameters and characterized versus section thickness. High densities (99.4-99.8%) were achieved across different thick sections, but markedly inhomogeneous microstructures also developed. Nonetheless, the tensile properties measured from 27 different thicknesswidth positions all clearly satisfied the minimum requirements for mill-annealed Ti-6Al-4V. SEBM produced highly dense thick sections of Ti-6Al-4V with good tensile properties. Large lack-of-fusion defects (80-250 lm) were found to be mainly responsible for variations in tensile properties.
Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes
IOP Conference Series: Materials Science and Engineering, 2017
The focus of this work has been microstructure characterisation of Ti-6Al-4V manufactured by five different additive manufacturing (AM) processes. The microstructure features being characterised are the prior β size, grain boundary α and α lath thickness. It was found that material manufactured with powder bed fusion processes has smaller prior β grains than the material from directed energy deposition processes. The AM processes with fast cooling rate render in thinner α laths and also thinner, and in some cases discontinuous, grain boundary α. Furthermore, it has been observed that material manufactured with the directed energy deposition processes has parallel bands, except for one condition when the parameters were changed, while the powder bed fusion processes do not have any parallel bands.
In this study, mechanical properties in Ti-6Al-4V samples built with the powder-bed electron beam additive manufacturing (EBAM) process over a range of beam scanning speeds were experimentally investigated. Four levels of speed functions were applied to build samples, which were used to prepare the specimens for the nanoindentation test to obtain their mechanical properties. The measured averaged Young's modulus and hardness are about 111.7~119.0 GPa and 5.24~6.52 GPa, respectively. It has been found that the Young's modulus and hardness increase with the increase of scanning speed in EBAM. The scanning surface presents more superior mechanical properties than those from side surface. The mechanical properties are also correlated to the microstructure characterization of EBAM components.
2018
Multiple methods of manufacturing Ti-6Al-4V powders for Additive Manufacturing (AM) are available. The effects of the powder quality, properties and post-processing conditions on microstructure and mechanical properties in Electron Beam Melting (EBM) process are investigated in this work. Two powders manufactured using Plasma (PA) and Gas (GA) Atomisation were fully characterised. Test specimens were built using default manufacturer’s (Arcam) parameters and mechanically tensile tested in different post-processing conditions: as built (near net-shape), heat treated using Hot Isostatic Pressing (HIP), and on surface machined. Each build specimen was cut and polished to analyse for porosity, defects, and microstructure. The microstructure of as-built samples was found to be of very fine and acicular morphology due to high solidification rate. HIP heat treatment has been observed to homogenise as-built anisotropic grain microstructure, with reduction and elimination of gas pores and def...
Materials
Additively-manufactured Ti-6Al-4V (Ti64) exhibits high strength but in some cases inferior elongation to those of conventionally manufactured materials. Post-processing of additively manufactured Ti64 components is investigated to modify the mechanical properties for specific applications while still utilizing the benefits of the additive manufacturing process. The mechanical properties and fatigue resistance of Ti64 samples made by electron beam melting were tested in the as-built state. Several heat treatments (up to 1000 °C) were performed to study their effect on the microstructure and mechanical properties. Phase content during heating was tested with high reliability by neutron diffraction at Los Alamos National Laboratory. Two different hot isostatic pressings (HIP) cycles were tested, one at low temperature (780 °C), the other is at the standard temperature (920 °C). The results show that lowering the HIP holding temperature retains the fine microstructure (~1% β phase) and ...