The Persistence Time of SARS-CoV-2 RNA in Hospitalized COVID-19 Patients: A Prospective Study (original) (raw)
Related papers
Virology Journal
Background The persistence of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) RNA in the body fluids of patients with the novel coronavirus disease 2019 (COVID-19) may increase the potential risk of viral transmission. There is still uncertainty on whether the recommended quarantine duration is sufficient to reduce the risk of transmission. This study aimed to investigate the persistence of SARS-CoV-2 RNA in the nasopharyngeal, blood, urine, and stool samples of patients with COVID-19. Methods In this hospital-based longitudinal study, 100 confirmed cases of COVID-19 were recruited between March 2020 and August 2020 in Guilan Province, north of Iran. Nasopharyngeal, blood, urine, and stool samples were obtained from each participant at the time of hospital admission, upon discharge, 1 week after discharge, and every 2 weeks until all samples were negative for SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction (RT-PCR) assay. A survival analysis was also p...
Clearance and persistence of SARS‐CoV‐2 RNA in patients with COVID‐19
Journal of Medical Virology, 2020
Patients with coronavirus disease-2019 may be discharged based on clinical resolution of symptoms, and evidence for viral RNA clearance from the upper respiratory tract. Understanding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral clearance profile is crucial to establish a re-testing plan on discharge and ending isolation of patients. We aimed to evaluate the number of days that a patient needed to
2021
Inpatient COVID-19 cases present enormous costs to patients and health systems. Many hospitalized patients may still test COVID-19 positive, even after resolution of symptoms. Thus, a pressing concern for clinicians is the safety of discharging these asymptomatic patients if they have any remaining infectivity. This case report explores the viral viability in a patient with persistent COVID-19 over the course of a two-month hospitalization. Positive nasopharyngeal swab samples, analyzed by quantitative reverse transcription polymerase chain reactions (qRT-PCR), were collected and isolated in the laboratory, and infectious doses were analyzed throughout the hospitalization period. The patient experienced waning symptoms by hospital day 40 and had no viable virus growth in the laboratory by hospital day 41, suggesting no risk of infectivity, despite positive RT-PCR results, which prolonged his hospital stay. Notably, this case showed infectivity for at least 24 days from disease onset...
International Journal of Infectious Diseases, 2021
Real-time reverse transcription PCR is currently the most sensitive method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Defining whether a patient could be contagious or not contagious in the presence of residual SARS-CoV-2 RNA is of extreme importance in the context of public health. In this prospective multicenter study, virus isolation was prospectively attempted in 387 nasal swabs from clinically recovered patients showing low viral load (quantification cycle, Cq, value greater than 30). The median Cq value was 36.8 (range 30.0-39.4). Overall, a cytopathic effect was detected in nine samples, corresponding to a culture positivity rate of 2.3% (9/387). The results of this study help to dissect true virus replication and residual viral RNA detection in recovered patients.
Scientific Reports
COVID-19 has overloaded national health services worldwide. Thus, early identification of patients at risk of poor outcomes is critical. Our objective was to analyse SARS-CoV-2 RNA detection in serum as a severity biomarker in COVID-19. Retrospective observational study including 193 patients admitted for COVID-19. Detection of SARS-CoV-2 RNA in serum (viremia) was performed with samples collected at 48–72 h of admission by two techniques from Roche and Thermo Fischer Scientific (TFS). Main outcome variables were mortality and need for ICU admission during hospitalization for COVID-19. Viremia was detected in 50–60% of patients depending on technique. The correlation of Ct in serum between both techniques was good (intraclass correlation coefficient: 0.612; p
2022
Plasma SARS-CoV-2 viral RNA (vRNA) levels are predictive of COVID-19 outcomes in hospitalized patients, but whether plasma vRNA reflects lower respiratory tract (LRT) vRNA levels is unclear. We compared plasma and LRT vRNA levels in simultaneously collected longitudinal samples from mechanically-ventilated patients with COVID-19. LRT and plasma vRNA levels were strongly correlated at first sampling (r=0.83, p<10−8) and then declined in parallel except in non-survivors who exhibited delayed vRNA clearance in LRT samples. Plasma vRNA measurement may offer a practical surrogate of LRT vRNA burden in critically ill patients, especially early in severe disease.
The Journal of Infectious Diseases, 2021
Background To better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding and infectivity, we estimated SARS-CoV-2 RNA shedding duration, described participant characteristics associated with the first negative rRT-PCR test (resolution), and determined if replication-competent viruses was recoverable ≥10 days after symptom onset. Methods We collected serial nasopharyngeal specimens from 109 individuals with rRT-PCR–confirmed COVID-19 in Utah and Wisconsin. We calculated viral RNA shedding resolution probability using the Kaplan-Meier estimator and evaluated characteristics associated with shedding resolution using Cox proportional hazards regression. We attempted viral culture for 35 rRT-PCR–positive nasopharyngeal specimens collected ≥10 days after symptom onset. Results The likelihood of viral RNA shedding resolution at 10 days after symptom onset was approximately 3%. Time to shedding resolution was shorter among participants aged <18 years (adjuste...
Recurrence of SARS-CoV-2 viral RNA in recovered COVID-19 patients: a narrative review
European Journal of Clinical Microbiology & Infectious Diseases
Many studies have shown that re-positive tests for SARS-CoV-2 by RT-PCR in recovered COVID-19 patients are very common. We aim to conduct this review to summarize the clinical and epidemiological characteristics of these patients and discuss the potential explanations for recurrences, the contagiousness of re-detectable positive SARS-CoV-2 virus, and the management of COVID-19 patients after discharge from hospital. The proportion of re-positive tests in discharged COVID-19 patients varied from 2.4 to 69.2% and persisted from 1 to 38 days after discharge, depending on population size, age of patients, and type of specimens. Currently, several causes of re-positive tests for SARS-CoV-2 in recovered COVID-19 patients are suggested, including false-negative, false-positive RT-PCR tests; reactivation; and re-infection with SARS-CoV-2, but the mechanism leading to these re-positive cases is still unclear. The prevention of re-positive testing in discharged patients is a fundamental measure to control the spread of the pandemic. In order to reduce the percentage of false-negative tests prior to discharge, we recommend performing more than two tests, according to the standard sampling and microbiological assay protocol. In addition, specimens should be collected from multiple body parts if possible, to identify SARS-CoV-2 viral RNA before discharge. Further studies should be conducted to develop novel assays that target a crucial region of the RNA genome in order to improve its sensitivity and specificity.
Novelty in Biomedicine, 2021
Background: Ruthin's coronavirus disease 2019 (COVID-19) diagnosis is based on the positive result of real-time polymerase chain reaction (PCR) from the nasal and oropharyngeal swab. However, chest CT scans can play an important role in diagnosing patients with COVID-19. Cases Report: In this study, we reported a 44 years old female with a mild form of the COVID-19 who showed a positive result for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA for 44 days after symptom onset. The suspected case was detected using real-time PCR. After two weeks of hospitalization, the patient was discharged, but her molecular tests were performed twice after one month and 44 days, and they remained positive for SARS-CoV-2 RNA. Conclusion: In theory, if the patient becomes re-infected or the virus reacts, these individuals may serve as a transmission source. So far, the only way to screen for possible reinfection has been by using PCR on separate specimens.
2020
ABSTRACTBackgroundLaboratory diagnosis of SARS-CoV-2 infection (the cause of COVID-19) uses PCR to detect viral RNA (vRNA) in respiratory samples. SARS-CoV-2 RNA has also been detected in other sample types, but there is limited understanding of the clinical or laboratory significance of its detection in blood.MethodsWe undertook a systematic literature review to assimilate the evidence for the frequency of vRNA in blood, and to identify associated clinical characteristics. We performed RT-PCR in serum samples from a UK clinical cohort of acute and convalescent COVID-19 cases (n=212), together with convalescent plasma samples collected by NHS Blood and Transplant (NHSBT) (n=111 additional samples). To determine whether PCR-positive blood samples could pose an infection risk, we attempted virus isolation from a subset of RNA-positive samples.ResultsWe identified 28 relevant studies, reporting SARS-CoV-2 RNA in 0-76% of blood samples; pooled estimate 10% (95%CI 5-18%). Among serum sam...