Persistent SARS-CoV-2 RNA Shedding Without Evidence of Infectiousness: A Cohort Study of Individuals With COVID-19 (original) (raw)
Related papers
Virology Journal
Background The persistence of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) RNA in the body fluids of patients with the novel coronavirus disease 2019 (COVID-19) may increase the potential risk of viral transmission. There is still uncertainty on whether the recommended quarantine duration is sufficient to reduce the risk of transmission. This study aimed to investigate the persistence of SARS-CoV-2 RNA in the nasopharyngeal, blood, urine, and stool samples of patients with COVID-19. Methods In this hospital-based longitudinal study, 100 confirmed cases of COVID-19 were recruited between March 2020 and August 2020 in Guilan Province, north of Iran. Nasopharyngeal, blood, urine, and stool samples were obtained from each participant at the time of hospital admission, upon discharge, 1 week after discharge, and every 2 weeks until all samples were negative for SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction (RT-PCR) assay. A survival analysis was also p...
Open Forum Infectious Diseases, 2022
Background. Identifying characteristics associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA shedding may be useful to understand viral compartmentalization, disease pathogenesis, and risks for viral transmission. Methods. Participants were enrolled August 2020 to February 2021 in ACTIV-2/A5401, a placebo-controlled platform trial evaluating investigational therapies for mild-to-moderate coronavirus disease 2019 (COVID-19), and underwent quantitative SARS-CoV-2 RNA testing on nasopharyngeal and anterior nasal swabs, oral wash/saliva, and plasma at entry (day 0, pretreatment) and days 3, 7, 14, and 28. Concordance of RNA levels (copies/mL) across compartments and predictors of nasopharyngeal RNA levels were assessed at entry (n = 537). Predictors of changes over time were evaluated among placebo recipients (n = 265) with censored linear regression models. Results. Nasopharyngeal and anterior nasal RNA levels at study entry were highly correlated (r = 0.84); higher levels of both were associated with greater detection of RNA in plasma and oral wash/saliva. Older age, White non-Hispanic race/ethnicity, lower body mass index (BMI), SARS-CoV-2 immunoglobulin G seronegativity, and shorter prior symptom duration were associated with higher nasopharyngeal RNA at entry. In adjusted models, body mass index and race/ethnicity associations were attenuated, but the association with age remained (for every 10 years older, mean nasopharyngeal RNA was 0.27 log 10 copies/ mL higher; P < .001). Examining longitudinal viral RNA levels among placebo recipients, women had faster declines in nasopharyngeal RNA than men (mean change, −2.0 vs −1.3 log 10 copies/mL, entry to day 3; P < .001). Conclusions. SARS-CoV-2 RNA shedding was concordant across compartments. Age was strongly associated with viral shedding, and men had slower viral clearance than women, which could explain sex differences in acute COVID-19 outcomes.
International Journal of Infectious Diseases, 2021
Real-time reverse transcription PCR is currently the most sensitive method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Defining whether a patient could be contagious or not contagious in the presence of residual SARS-CoV-2 RNA is of extreme importance in the context of public health. In this prospective multicenter study, virus isolation was prospectively attempted in 387 nasal swabs from clinically recovered patients showing low viral load (quantification cycle, Cq, value greater than 30). The median Cq value was 36.8 (range 30.0-39.4). Overall, a cytopathic effect was detected in nine samples, corresponding to a culture positivity rate of 2.3% (9/387). The results of this study help to dissect true virus replication and residual viral RNA detection in recovered patients.
Clearance and persistence of SARS‐CoV‐2 RNA in patients with COVID‐19
Journal of Medical Virology, 2020
Patients with coronavirus disease-2019 may be discharged based on clinical resolution of symptoms, and evidence for viral RNA clearance from the upper respiratory tract. Understanding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral clearance profile is crucial to establish a re-testing plan on discharge and ending isolation of patients. We aimed to evaluate the number of days that a patient needed to
Pathophysiology
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) ribonucleic acid (RNA) shedding is an important parameter for determining the optimal length of isolation period required for coronavirus disease 2019 (COVID-19) patients. However, the clinical (i.e., patient and disease) characteristics that could influence this parameter have yet to be determined. In this study, we aim to explore the potential associations between several clinical features and the duration of SARS-CoV-2 RNA shedding in patients hospitalized with COVID-19. A retrospective cohort study involving 162 patients hospitalized for COVID-19 in a tertiary referral teaching hospital in Indonesia was performed from June to December 2021. Patients were grouped based on the mean duration of viral shedding and were compared based on several clinical characteristics (e.g., age, sex, comorbidities, COVID-19 symptoms, severity, and therapies). Subsequently, clinical factors potentially associated with the duration of...
Frontiers in Immunology, 2021
Prolonged shedding of viral RNA occurs in some individuals following SARS-CoV-2 infection. We perform comprehensive immunologic evaluation of one individual with prolonged shedding. The case subject recovered from severe COVID-19 and tested positive for SARS-CoV-2 viral RNA repeatedly as many as 87 days after the first positive test, 97 days after symptom onset. The subject did not have any associated rise in anti-Spike protein antibody titers or plasma neutralization activity, arguing against re-infection. This index subject exhibited a profoundly diminished circulating CD8+ T cell population and correspondingly low SARS-CoV-2-specific CD8+ T cell responses when compared with a cohort of other recovering COVID-19 subjects. CD4+ T cell responses and neutralizing antibody responses developed as expected in this individual. Our results demonstrate that detectable viral RNA shedding in the upper airway can occur more than 3 months following infection in some individuals with COVID-19 a...
The Persistence Time of SARS-CoV-2 RNA in Hospitalized COVID-19 Patients: A Prospective Study
Infectious Disorders - Drug Targets, 2022
Background: In late December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the causative agent of coronavirus disease 2019 (COVID-19), spread to almost all countries worldwide. The outbreak of this virus has been confirmed on 19th February, 2020, in Iran. Objective: The aim of this study was to investigate the time of viral RNA clearance in swab and serum samples of COVID-19 patients having received different medications. We also evaluated different factors that may affect viral RNA persistence in patients infected by SARS-CoV-2. Methods: In March 2020, twenty-one hospitalized COVID-19 patients participated in this prospective study. All patients received antiviral agents in their routine care. Throat swabs and blood samples were obtained from all patients in different intervals, including day 3 or 5, day 7, day 10, and finally, 14 days after the first positive real-time RT-PCR (rRT-PCT) test. Result: The median time from the symptom onset (SO) to the first nega...
2020
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 emerged in December 2019 and has spread globally. Although Thailand has been effective at controlling the spread of COVID-19, disease surveillance and information on antibody responses in infected cases and close contacts are needed because there is still no specific treatment or vaccine available. We investigated 217 recovered COVID-19 cases to monitor their viral RNA shedding and production of antibodies against SARS-CoV-2. The presence of antibodies in blood samples from 308 close contacts of COVID-19 cases was also determined. Viral RNA was still detectable in 6.6 % of recovered COVID-19 cases. The most prolonged duration of viral RNA shedding detected in this study was 105 days. IgM, IgG, and IgA antibodies against SARS-CoV-2 were detected in 13.82, 88.48, and 83.41 % of the recovered cases 4–12 weeks after disease onset, respectively. Although the patients ha...
2021
Inpatient COVID-19 cases present enormous costs to patients and health systems. Many hospitalized patients may still test COVID-19 positive, even after resolution of symptoms. Thus, a pressing concern for clinicians is the safety of discharging these asymptomatic patients if they have any remaining infectivity. This case report explores the viral viability in a patient with persistent COVID-19 over the course of a two-month hospitalization. Positive nasopharyngeal swab samples, analyzed by quantitative reverse transcription polymerase chain reactions (qRT-PCR), were collected and isolated in the laboratory, and infectious doses were analyzed throughout the hospitalization period. The patient experienced waning symptoms by hospital day 40 and had no viable virus growth in the laboratory by hospital day 41, suggesting no risk of infectivity, despite positive RT-PCR results, which prolonged his hospital stay. Notably, this case showed infectivity for at least 24 days from disease onset...
Journal of Medical Virology, 2021
Diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS‐COV‐2) cases is based on the count of real‐time reverse transcription‐plymerase chain reaction (RT‐PCR) positive people. Viral load by real‐time RT‐PCR has been suggested as a biomarker of the SARS‐CoV‐2 infection. However, the association of viral load and severity of the disease is not yet resolved. Nasopharyngeal samples from 458 patients were tested by RT‐PCR for SARS‐CoV‐2 diagnosis. Relative quantitation was made by the comparative threshold cycle (ΔΔCt) formula between ORF1ab viral and RNase P housekeeping genes. Absolute viral load was calculate using a reference positive control. Most prevalent clinical signs were cough (75.8%), myalgia (66.7%), and fever (48.5%). Hypertension (18.2%), neurological diseases (15.1%), and asthma and hypothyroidism (12.1%) were most frequent comorbidities. Fever, either as an exclusive symptom or combined with others, was associated with high viral loads ( 2 ‐ ∆ ∆ C t range, 35.65–155.16; 4.25–4.89 log10 RNA copies/test]). During the first week after onset of symptoms in mild patients up to 60 years‐old was detected the peak of viral load. Children under 10 years old have a high viral load (313.84; 2.50) in the first 2 days postinfection with a sharp decline thereafter. Cases between 10 and 49 years old mostly showed low and moderate viral load during the first 2 days postinfection (range, 0.03 to 17.24; −1.50 to 1.24). Patients over 60 years old have high viral load up to the second week after the onset of symptoms (range, 25.32–155.42; 1.40–2.19), indicating the longer presence of the virus in them. These findings suggest the viral load in nasopharyngeal swabs would help to monitor the SARS‐CoV‐2 infection in mild coronavirus disease 2019 cases.