Structure and Function of the E. coli Dihydroneopterin Triphosphate Pyrophosphatase: A Nudix Enzyme Involved in Folate Biosynthesis (original) (raw)
Related papers
A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae
Journal of Bacteriology
A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydi-oneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterih product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.
Journal of Bacteriology, 2009
Dihydroneopterin aldolase (FolB) catalyzes conversion of dihydroneopterin to 6-hydroxymethyldihydropterin (HMDHP) in the classical folate biosynthesis pathway. However, folB genes are missing from the genomes of certain bacteria from the phyla Chloroflexi, Acidobacteria, Firmicutes, Planctomycetes, and Spirochaetes. Almost all of these folB-deficient genomes contain an unusual paralog of the tetrahydrobiopterin synthesis enzyme 6-pyruvoyltetrahydropterin synthase (PTPS) in which a glutamate residue replaces or accompanies the catalytic cysteine. A similar PTPS paralog from the malaria parasite Plasmodium falciparum is known to form HMDHP from dihydroneopterin triphosphate in vitro and has been proposed to provide a bypass to the FolB step in vivo. Bacterial genes encoding PTPS-like proteins with active-site glutamate, cysteine, or both residues were accordingly tested together with the P. falciparum gene for complementation of the Escherichia coli folB mutation. The P. falciparum sequence and bacterial sequences with glutamate or glutamate plus cysteine were active; those with cysteine alone were not. These results demonstrate that PTPS paralogs with an active-site glutamate (designated PTPS-III proteins) can functionally replace FolB in vivo. Recombinant bacterial PTPS-III proteins, like the P. falciparum enzyme, mediated conversion of dihydroneopterin triphosphate to HMDHP, but other PTPS proteins did not. Neither PTPS-III nor other PTPS proteins exhibited significant dihydroneopterin aldolase activity. Phylogenetic analysis indicated that PTPS-III proteins may have arisen independently in various PTPS lineages. Consistent with this possibility, merely introducing a glutamate residue into the active site of a PTPS protein conferred incipient activity in the growth complementation assay, and replacing glutamate with alanine in a PTPS-III protein abolished complementation.
Journal of Bacteriology, 1993
A protein encoded by sulD, one of four genes in a previously cloned folate biosynthetic operon of Streptococcus pneumoniae, had been shown to harbor 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase activity. This SulD protein was purified and shown now to harbor also dihydi-oneopterin aldolase activity. The bifunctional protein therefore catalyzes two successive steps in folate biosynthesis. The aldolase activity can be ascribed to the N-terminal domain of the SulD polypeptide, and the pyrophosphokinase activity can be ascribed to the C-terminal domain. Homologs of the dihydroneopterin aldolase domain were identified in other species, in one of which the domain was encoded as a separate polypeptide. The native SulD protein is a trimer or tetramer of a 31-kDa subunit, and it dissociated reversibly after purification. Dihydroneopterin aldolase activity required the multimeric protein, whereas pyrophosphokinase was expressed by the monomeric form. With purified SulD, the amount of 6-hydroxymethyl-7,8-dihydropterih product formed by the aldolase was proportional to the fourth power of the enzyme concentration, as expected for a reversibly dissociating tetramer. By identifying the gene encoding dihydroneopterin aldolase, this work extends our understanding of the molecular basis of the folate biosynthetic system common to many organisms.
FEBS Letters, 1999
The X-ray crystal structure of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase (PPPK) in a ternary complex with ATP and a pterin analogue has been solved to 2.0 A î resolution, giving, for the first time, detailed information of the PPPK/ATP intermolecular interactions and the accompanying conformational change. The first 100 residues of the 158 residue peptide contain a L LK KL LL LK KL L motif present in several other proteins including nucleoside diphosphate kinase. Comparative sequence examination of a wide range of prokaryotic and lower eukaryotic species confirms the conservation of the PPPK active site, indicating the value of this de novo folate biosynthesis pathway enzyme as a potential target for the development of novel broad-spectrum anti-infective agents.
International Journal of Biochemistry & Cell Biology, 2008
Thymidylate synthase (TS) catalyzes the reductive methylation of deoxyuridine monophosphate (dUMP) using methylene tetrahydrofolate (CH 2 THF) as cofactor, the glutamate tail of which forms a water-mediated hydrogen-bond with an invariant lysine residue of this enzyme. To understand the role of this interaction, we studied the K48Q mutant of Escherichia coli TS using structural and biophysical methods. The k cat of the K48Q mutant was 430 fold lower than wild-type TS in activity, while the the K m for the (R)-stereoisomer of CH 2 THF was 300 µM, about 30 fold larger than K m from the wild-type TS. Affinity constants were determined using isothermal titration calorimetry, which showed that binding was reduced by one order of magnitude for folate-like TS inhibitors, such as propargyl-dideaza folate (PDDF) or compounds that distort the TS active site like BW1843U89 (U89). The crystal structure of the K48Q-dUMP complex revealed that dUMP binding is not impaired in the mutamt, and that U89 in a ternary complex of K48Q-nucleotide-U89 was bound in the active site with subtle differences relative to comparable wild type complexes. PDDF failed to form ternary complexes with K48Q and dUMP. Thermodynamic data correlated with the structural determinations, since PDDF binding was dominated by enthalpic effects while U89 had an important entropic component. In conclusion, K48 is critical for catalysis since it leads to a productive CH 2 THF binding, while mutation at this residue does not affect much the binding of inhibitors that do not make contact with this group.