Mitochondrial DNA, direct repeats, deletions, and centenarians: An unfinished puzzle (original) (raw)
Related papers
Clinical Science, 2004
Among the numerous theories that explain the process of aging, the mitochondrial theory of aging has received the most attention. This theory states that electrons leaking from the ETC (electron transfer chain) reduce molecular oxygen to form O2•− (superoxide anion radicals). O2•−, through both enzymic and non-enzymic reactions, can cause the generation of other ROS (reactive oxygen species). The ensuing state of oxidative stress results in damage to ETC components and mtDNA (mitochondrial DNA), thus increasing further the production of ROS. Ultimately, this ‘vicious cycle’ leads to a physiological decline in function, or aging. This review focuses on recent developments in aging research related to the role played by mtDNA. Both supportive and contradictory evidence is discussed.
Journal of Scientific Research, 2010
According to the mitochondrial theory of aging, accrual of mutations in mitochondrial DNA (mtDNA) plays the paramount function in the cellular pathology of aging and in development of age-related degenerative ailments. Reactive oxygen species (ROS), which are byproducts of oxidative phosphorylation (OX-PHOS) in aerobic (mitochondrial) respiration, cause oxidative stress-induced damage to mtDNA. This damaged DNA, whose normal role is to encode proteins many of which are players in the electron transport chain (ETC), now codes for defective proteins. Such faulty proteins lead to a considerable impairment in the efficacy of ETC, thereby generating more ROS, which cause further damage to mtDNA in turn, leading to further defects in proteins, aggravated ETC dysfunction, and even more ROS. Hence, a ‘vicious cycle’ propagates that ultimately directs tissue cells towards structural and functional decline, or in other words, degeneration and aging. However, in spite of a wide acceptance of t...
Mitochondrial DNA Damage Patterns and Aging: Revising the Evidences for Humans and Mice
Aging and Disease, 2013
A significant body of work, accumulated over the years, strongly suggests that damage in mitochondrial DNA (mtDNA) contributes to aging in humans. Contradictory results, however, are reported in the literature, with some studies failing to provide support to this hypothesis. With the purpose of further understanding the aging process, several models, among which mouse models, have been frequently used. Although important affinities are recognized between humans and mice, differences on what concerns physiological properties, disease pathogenesis as well as life-history exist between the two; the extent to which such differences limit the translation, from mice to humans, of insights on the association between mtDNA damage and aging remains to be established. In this paper we revise the studies that analyze the association between patterns of mtDNA damage and aging, investigating putative alterations in mtDNA copy number as well as accumulation of deletions and of point mutations. Reports from the literature do not allow the establishment of a clear association between mtDNA copy number and age, either in humans or in mice. Further analysis, using a wide spectrum of tissues and a high number of individuals would be necessary to elucidate this pattern. Likewise humans, mice demonstrated a clear pattern of age-dependent and tissuespecific accumulation of mtDNA deletions. Deletions increase with age, and the highest amount of deletions has been observed in brain tissues both in humans and mice. On the other hand, mtDNA point mutations accumulation has been clearly associated with age in humans, but not in mice. Although further studies, using the same methodologies and targeting a larger number of samples would be mandatory to draw definitive conclusions, the revision of the available data raises concerns on the ability of mouse models to mimic the mtDNA damage patterns of humans, a fact with implications not only for the study of the aging process, but also for investigations of other processes in which mtDNA dysfunction is a hallmark, such as neurodegeneration.
Aging: A mitochondrial DNA perspective, critical analysis and an update
World journal of experimental medicine, 2014
The mitochondrial theory of aging, a mainstream theory of aging which once included accumulation of mitochondrial DNA (mtDNA) damage by reactive oxygen species (ROS) as its cornerstone, has been increasingly losing ground and is undergoing extensive revision due to its inability to explain a growing body of emerging data. Concurrently, the notion of the central role for mtDNA in the aging process is being met with increased skepticism. Our progress in understanding the processes of mtDNA maintenance, repair, damage, and degradation in response to damage has largely refuted the view of mtDNA as being particularly susceptible to ROS-mediated mutagenesis due to its lack of "protective" histones and reduced complement of available DNA repair pathways. Recent research on mitochondrial ROS production has led to the appreciation that mitochondria, even in vitro, produce much less ROS than previously thought, automatically leading to a decreased expectation of physiologically achi...
Mitochondrial DNA damage and the aging process–facts and imaginations*
Free Radical Research, 2006
Mitochondrial DNA (mtDNA) is a circular double-stranded molecule organized in nucleoids and covered by the histone-like protein mitochondrial transcription factor A (TFAM). Even though mtDNA repair capacity appears to be adequate the accumulation of mtDNA mutations has been shown to be at least one important molecular mechanism of human aging. Reactive oxygen species (ROS), which are generated at the FMN moiety of mitochondrial respiratory chain (RC) complex I, should be considered to be important at least for the generation of age-dependent mtDNA deletions. However, the accumulation of acquired mutations to functionally relevant levels in aged tissues seems to be a consequence of clonal expansions of single founder molecules and not of ongoing mutational events.
Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease
Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2018
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Mitochondrial function and mitochondrial DNA maintenance with advancing age
2014
We review the impact of mitochondrial DNA (mtDNA) maintenance and mitochondrial function on the aging process. Mitochondrial function and mtDNA integrity are closely related. In order to create a protective barrier against reactive oxygen and nitrogen species (RONS) attacks and ensure mtDNA integrity, multiple cellular mtDNA copies are packaged together with various proteins in nucleoids. Regulation of antioxidant and RONS balance, DNA base excision repair, and selective degradation of damaged mtDNA copies preserves normal mtDNA quantities. Oxidative damage to mtDNA molecules does not substantially contribute to increased mtDNA mutation frequency; rather, mtDNA replication errors of DNA PolG are the main source of mtDNA mutations. Mitochondrial turnover is the major contributor to maintenance of mtDNA and functionally active mitochondria. Mitochondrial turnover involves mitochondrial biogenesis, mitochondrial dynamics, and selective autophagic removal of dysfunctional mitochondria (i.e., mitophagy). All of these processes exhibit decreased activity during aging and fall under greater nuclear genome control, possibly coincident with the emergence of nuclear genome instability. We suggest that the age-dependent accumulation of mutated mtDNA copies and dysfunctional mitochondria is associated primarily with decreased cellular autophagic and mitophagic activity.