On the Dissociation Efficiency of Charge Transfer Excitons and Frenkel Excitons in Organic Solar Cells: A Luminescence Quenching Study (original) (raw)
Related papers
Energy & Environmental Science, 2011
Organic semiconductor blends yielding efficient charge generation and transport are key components for the development of high performance organic bulk-heterojunction solar cells. In this paper the effect of the processing additive octane-dithiol on the charge transfer emission in poly[2,6-(4,4-bis-(2ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b 0 ]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) is investigated. Despite the fact that blends processed with and without additive show a ground state charge transfer optical absorption only the blend processed without additive shows a corresponding charge transfer emission. The presented experimental data show that the nano-morphology of the bulk-heterojunction blends plays an important role for the formation of emissive charge transfer excitons, and that it is a loss channel in the studied solar cells.
Physical Review B, 2013
Efficient exciton dissociation at a donor-acceptor interface is the crucial, yet not fully understood, step for obtaining high efficiency organic solar cells. Recent theoretical work suggested an influence of polymer conjugation length and of interfacial dipoles on the exciton dissociation yield. This necessitates experimental verification. To this end, we measured the dissociation yield of several polymer/C 60 planar heterojunction solar cells up to high electric fields. The results indeed prove that the yield of exciton dissociation depends strongly on the conjugation length of the polymers. Complementary photoemission experiments were carried out to assess the importance of dipoles at the donor-acceptor interfaces. Comparison of exciton dissociation models with experimental data shows that the widely used Onsager-Braun approach is unsuitable to explain photodissociation in polymer/C 60 cells. Better agreement can be obtained using "effective mass" models that incorporate conjugation length effects by considering a reduced effective mass of the hole on the polymer and that include dielectric screening effects by interfacial dipoles. However, successful modeling of the photocurrent field dependence over a broad field range, in particular for less efficient solar cell compounds, requires that the dissociation at localized acceptor sites is also taken into account.
Origin of Charge Transfer Exciton Dissociation in Organic Solar Cells
Excitons, 2018
Using a temperature (T)-dependent tight-binding (TB) model for an electron-hole pair at the donor-acceptor (DA) interface, we investigate the dissociation of charge transfer exciton (CTE) into free carriers, that is, an electron and a hole. We observe the existence of the localization-delocalization transition at a critical T, below which the charges are localized to the DA interface, and above which the charges are delocalized over the system. This explains the CTE dissociation observed in organic solar cells. The present study highlights the combined effect of finite T and carrier delocalization in the CTE dissociation.
Journal of the American Chemical Society, 2014
The conventional picture of photocurrent generation in organic solar cells involves photoexcitation of the electron donor, followed by electron transfer to the acceptor via an interfacial charge-transfer state (Channel I). It has been shown that the mirror-image process of acceptor photoexcitation leading to hole transfer to the donor is also an efficient means to generate photocurrent (Channel II). The donor and acceptor components may have overlapping or distinct absorption characteristics. Hence, different excitation wavelengths may preferentially activate one channel or the other, or indeed both. As such, the internal quantum efficiency (IQE) of the solar cell may likewise depend on the excitation wavelength. We show that several model high-efficiency organic solar cell blends, notably PCDTBT:PC70BM and PCPDTBT:PC60/70BM, exhibit flat IQEs across the visible spectrum, suggesting that charge generation is occurring either via a dominant single channel or via both channels but with comparable efficiencies. In contrast, blends of the narrow optical gap copolymer DPP-DTT with PC70BM show two distinct spectrally flat regions in their IQEs, consistent with the two channels operating at different efficiencies. The observed energy dependence of the IQE can be successfully modeled as two parallel photodiodes, each with its own energetics and exciton dynamics but both having the same extraction efficiency. Hence, an excitation-energy dependence of the IQE in this case can be explained as the interplay between two photocurrent-generating channels, without recourse to hot excitons or other exotic processes.
The Journal of Physical Chemistry Letters, 2016
Efficient organic solar cells are based on (electron) donor−acceptor heterojunctions. An optically generated excited molecular state (exciton) is dissociated at this junction, forming a charge-transfer (CT) state in an intermediate step before the electron and hole are completely separated. The observed highly efficient dissociation of this Coulombically bound state raises the question on the dissociation mechanism. Here, we show that the observed high quantum yields of charge carrier generation and CT state dissociation are due to extended (and consequently weakly bound) CT states visible in absorption and emission spectra and first-principles calculations. Identifying a new geminate-pair loss mechanism via donor excimers, we find that the hole on the smallmolecule donor is not localized on a single molecule and charge separation is correlated with the energetic offset between excimer and CT states. Thus, the charges upon interface charge transfer and even in the case of back-transfer and recombination are less localized than commonly assumed.