High-resolution simulations of global climate, part 1: present climate (original) (raw)

Mechanisms for the land/sea warming contrast exhibited by simulations of climate change

Climate Dynamics, 2008

The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius-Clapeyron relationship of saturation specific humidity to temperature is critical in and . We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.

Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model

Journal of Climate, 2012

The authors present results for simulated climate and climate change from a newly developed highresolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.

Variability of surface climate in simulations of past and future

2020

It is virtually certain that the mean surface temperature of the Earth will continue to increase under realistic emission scenarios, yet comparatively little is known about future changes in climate variability. This study explores changes in climate variability over the large range of climates simulated by the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP5/6) and the Paleoclimate Modeling Intercomparison Project Phase 3 (PMIP3), including time slices of the Last Glacial Maximum, the mid-Holocene, and idealized experiments (1 % CO 2 and abrupt4×CO 2). These states encompass climates within a range of 12 • C in global mean temperature change. We examine climate variability from the perspectives of local interannual change, coherent climate modes, and through compositing extremes. The change in the interannual variability of precipitation is strongly dependent upon the local change in the total amount of precipitation. At the global scale, temperature variability is inversely related to mean temperature change on intra-seasonal to multidecadal timescales. This decrease is stronger over the oceans, while there is increased temperature variability over subtropical land areas (40 • S-40 • N) in warmer simulations. We systematically investigate changes in the standard deviation of modes of climate variability, including the North Atlantic Oscillation, the El Niño-Southern Oscillation, and the Southern Annular Mode, with global mean temperature change. While several climate modes do show consistent relationships (most notably the Atlantic Zonal Mode), no generalizable pattern emerges. By compositing extreme precipitation years across the ensemble, we demonstrate that the same large-scale modes influencing rainfall variability in Mediterranean climates persist throughout paleoclimate and future simulations. The robust nature of the response of climate variability, between cold and warm climates as well as across multiple timescales, suggests that observations and proxy reconstructions could provide a meaningful constraint on climate variability in future projections.

Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

Geophysical Research Letters, 2001

We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis shows that a number of consistent patterns of regional change across models and scenarios are now emerging. For temperature, in addition to maximum winter warming in northern high latitudes, warming much greater than the global average is found over Central Asia, Tibet and the Mediterranean region in summer. Consistent warming lower than the global average is found in some seasons over Southern South America, Southeast Asia and South Asia, while cases of inconsistent warming amplification compared to the global average occur mostly in some tropical and southern sub-tropical regions. Consistent increase in winter precipitation is found in northern high latitude regions, as well as Central Asia, Tibet, Western and Eastern North America, and Western and Eastern Africa regions. The experiments also indicate an increase in South Asia and East Asia summer monsoon precipitation. A number of regions show a consistent decrease in precipitation, such as Southern Africa and Australia in winter, the Mediterranean region in summer and Central America in both seasons. Possible physical mechanisms that lead to the simulated changes are discussed.

Evaluation of a Unique Approach to High-Resolution Climate Modelling using the Model for Prediction Across Scales (MPAS) version 5.1

2019

We present multi-seasonal simulations representative of present-day and future thermodynamic environments using the global Model for Prediction Across Scales-Atmosphere (MPAS) version 5.1 with high resolution (15 km) throughout the Northern Hemisphere. We select ten simulation years with varying phases of El Niño-Southern Oscillation 10 (ENSO) and integrate each for 14.5 months. We use analysed sea surface temperature (SST) patterns for present-day simulations. For the future climate simulations, we alter present-day SSTs by applying monthly-averaged temperature changes derived from a 20-member ensemble of Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) following the Representative Concentration Pathway (RCP) 8.5 emissions scenario. Daily sea ice fields, obtained from the monthly-averaged CMIP5 ensemble mean sea ice, are used for present-day and future simulations. 15 The present-day simulations provide a reasonable reproduction of large-scale atmospheric features in the Northern Hemisphere such as the wintertime midlatitude storm tracks, upper-tropospheric jets, and maritime sea-level pressure features as well as annual precipitation patterns across the tropics. The simulations also adequately represent tropical cyclone (TC) characteristics such as strength, spatial distribution, and seasonal cycles for most of Northern Hemispheric basins. These results demonstrate the applicability of these model simulations for future studies examining climate change effects on 20 various Northern Hemispheric phenomena, and, more generally, the utility of MPAS for studying climate change at spatial scales generally unachievable in GCMs. Plain Language Summary. We expect that high-impact weather events will change in a warmer climate. Computational constraints limit global climate models to resolutions that are too coarse to fully capture many societally significant weather 25 events, such as tropical cyclones and flooding rains in middle-latitude low-pressure systems. While these global models often provide reliable projections of changes in mean temperatures and global circulation patterns, they cannot tell us how intense, high-impact events may be altered in response to climate change. Here, we present a novel set of atmospheric simulations designed to address changes in high-impact weather events. The model covers the globe, but has higher resolution in the Northern Hemisphere. We simulate ten years sampling a range of tropical climate conditions, as represented 30 by observed ocean surface temperatures, and we carry out simulations for current and projected late 21st-century climate

High resolution global climate modelling; the UPSCALE project, a large simulation campaign

Geoscientific Model Development Discussions, 2014

The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

Review of simulations of climate variability and change with the GFDL R30 coupled climate model

Climate Dynamics, 2002

A review is presented of the development and simulation characteristics of the most recent version of a global coupled model for climate variability and change studies at the Geophysical Fluid Dynamics Laboratory, as well as a review of the climate change experiments performed with the model. The atmospheric portion of the coupled model uses a spectral technique with rhomboidal 30 truncation, which corresponds to a transform grid with a resolution of approximately 3.75°l ongitude by 2.25°latitude. The ocean component has a resolution of approximately 1.875°longitude by 2.25°l atitude. Relatively simple formulations of river routing, sea ice, and land surface processes are included. Two primary versions of the coupled model are described, differing in their initialization techniques and in the specification of sub-grid scale oceanic mixing of heat and salt. For each model a stable control integration of near millennial scale duration has been conducted, and the characteristics of both the time-mean and variability are described and compared to observations. A review is presented of a suite of climate change experiments conducted with these models using both idealized and realistic estimates of time-varying radiative forcing. Some experiments include estimates of forcing from past changes in volcanic aerosols and solar irradiance. The experiments performed are described, and some of the central findings are highlighted. In particular, the observed increase in global mean surface temperature is largely contained within the spread of simulated global mean temperatures from an ensemble of experiments using observationally-derived estimates of the changes in radiative forcing from increasing greenhouse gases and sulfate aerosols.