Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig (original) (raw)

Generalization of ℓ1 constraints for high dimensional regression problems

M. Hebiri

View PDFchevron_right

Lad-Lasso: Simulation Study of Robust Regression in High Dimensional Data

anang kurnia

2015

View PDFchevron_right

The Generalized LASSO

Volker Roth

IEEE Transactions on Neural Networks, 2004

View PDFchevron_right

Penalized estimation of high-dimensional models under a generalized sparsity cindition

Joel Horowitz

Statistica Sinica, 2013

View PDFchevron_right

Stochastic Restricted LASSO-Type Estimator in the Linear Regression Model

Manickavasagar Kayanan

Journal of Probability and Statistics

View PDFchevron_right

PENALIZED REGRESSION: BOOTSTRAP CONFIDENCE INTERVALS AND VARIABLE SELECTION FOR HIGH-DIMENSIONAL DATA SETS

samantha sartori

Milano: Università degli studi di Milano. Universita'degli …, 2011

View PDFchevron_right

High-dimensional inference in linear models: robustness and adaptivity to model sparsity

Jelena Bradic, Yinchu Zhu

View PDFchevron_right

Transductive versions of the LASSO and the Dantzig Selector

M. Hebiri

Journal of Statistical Planning and Inference, 2012

View PDFchevron_right

Convex optimization methods for dimension reduction and coefficient estimation in multivariate linear regression

Renato Monteiro

Mathematical Programming, 2012

View PDFchevron_right

Simple expressions of the LASSO and SLOPE estimators in low-dimension

Didier Concordet

Statistics, 2020

View PDFchevron_right

Simple expressions of the LASSO and SLOPE estimators in small-dimension

Didier Concordet

HAL (Le Centre pour la Communication Scientifique Directe), 2018

View PDFchevron_right

A Survey of L 1 Regression

Concha Bielza

International Statistical Review, 2013

View PDFchevron_right

Regularization of Linear Regression Models

Alessandro Chiuso

Springer eBooks, 2022

View PDFchevron_right

Discussion: The Dantzig selector: Statistical estimation when p is much larger than n

Peter Bickel

The Annals of Statistics, 2007

View PDFchevron_right

The performance of group lasso for linear regression of grouped variables

Marco Duarte

2011

View PDFchevron_right

Hypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory

Andrea Montanari

2013

View PDFchevron_right

Analysis of Penalized Regression Methods in a Simple Linear Model on the High-Dimensional Data

zari farhadi

American Journal of Theoretical and Applied Statistics, 2019

View PDFchevron_right

On The Degrees of Freedom of Reduced-rank Estimators in Multivariate Regression

Kong Chen

View PDFchevron_right

Vector-Valued Least-Squares Regression under Output Regularity Assumptions

Florence d'Alché-Buc

arXiv (Cornell University), 2022

View PDFchevron_right

A comparison of the lasso and marginal regression

Jiashun Jin

Journal of Machine Learning Research, 2012

View PDFchevron_right

The Induced Smoothed lasso: A practical framework for hypothesis testing in high dimensional regression

gianluca sottile

Statistical Methods in Medical Research, 2019

View PDFchevron_right

On linear regression models in infinite dimensional spaces with scalar response

Francesca Ieva, Giacomo Aletti

View PDFchevron_right

Sparse Regression

Jinseog Kim

2006

View PDFchevron_right

A tutorial on the Lasso approach to sparse modeling

Rasmus Bro

Chemometrics and Intelligent Laboratory Systems, 2012

View PDFchevron_right

Signal extraction approach for sparse multivariate response regression

Ruiyan Luo

Journal of Multivariate Analysis, 2017

View PDFchevron_right

Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression

Olcay Arslan

Computational Statistics & Data Analysis, 2012

View PDFchevron_right

Preliminary test and Stein-type shrinkage LASSO-based estimators

Mina Norouzirad

2018

View PDFchevron_right

A Tuning-free Robust and Efficient Approach to High-dimensional Regression

Runze Li

Journal of the American Statistical Association, 2020

View PDFchevron_right

Adaptive Lasso for high dimensional regression and Gaussian graphical modeling

Peter Bühlmann

2009

View PDFchevron_right

On Ridge Regression and Least Absolute Shrinkage and Selection Operator

Joel Asquier

2017

View PDFchevron_right

Model Selection Through Sparse Maximum Likelihood Estimation

Onureena Banerjee

arXiv (Cornell University), 2007

View PDFchevron_right

Robust Linear Regression Using L1-Penalized MM-Estimation for High Dimensional Data

ali hakan buyuklu

American Journal of Theoretical and Applied Statistics, 2015

View PDFchevron_right

Penalized methods and algorithms for high-dimensional regression in the presence of heterogeneity

Congrui Yi

View PDFchevron_right

Selection of variables and dimension reduction in high-dimensional non-parametric regression

K. Bertin

Electronic Journal of Statistics, 2008

View PDFchevron_right

Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data

Onureena Banerjee

arXiv (Cornell University), 2007

View PDFchevron_right