Distinguishing the Central Drive to Tremor in Parkinson's Disease and Essential Tremor (original) (raw)
Related papers
The cerebral oscillatory network of voluntary tremor
2004
It has recently been shown that resting tremor in Parkinson's disease is associated with oscillatory neural coupling in an extensive cerebral network comprising a cerebello-diencephalic-cortical loop and cortical motor, somatosensory and posterior parietal areas contralateral to the tremor hand. The aim of the present study was to investigate whether this oscillatory brain network exclusively reflects a pathophysiological state in parkinsonian resting tremor or whether it constitutes a fundamental feature of physiological motor control. We investigated cerebro-muscular and cerebro-cerebral coupling in 11 healthy subjects imitating typical antagonistic parkinsonian tremor. We recorded brain activity with a 122-channel whole-head neuromagnetometer and surface EMGs of the forearm extensor. Analysis of cerebro-muscular and cerebro-cerebral coherence revealed oscillatory coupling in the same brain structures that comprise the oscillatory network of parkinsonian resting tremor. Interestingly, similar to parkinsonian resting tremor, cerebro-cerebral coherences often showed a significant peak at twice the simulated tremor frequency. The most striking differences between parkinsonian patients, as investigated in a previous study and healthy subjects imitating the antagonistic resting tremor were a reduction of the coupling between primary sensorimotor cortex and a diencephalic structure-most likely the thalamus-and an enhancement of the coupling between premotor and primary sensorimotor cortex. Our results indicate that the coupling of oscillatory activity within a cerebello-diencephalic-cortical loop constitutes a basic feature of physiological motor control. Thus, our data are consistent with the hypothesis that parkinsonian resting tremor involves oscillatory cerebro-cerebral coupling in a physiologically pre-existing network.
The cerebral oscillatory network of parkinsonian resting tremor
2003
Partial coherence analysis and the calculation of phase shifts revealed a strong bidirectional coupling between the EMG and diencephalic activity and a direct afferent coupling between the EMG and SII and the PPC. In contrast, the cerebellum, SMA/CMA and PM show little evidence for direct coupling with the peripheral EMG but seem to be connected with the periphery via other cerebral areas (e.g. M1). In summary, our results demonstrate tremor-related oscillatory activity within a cerebral network, with abnormal coupling in a cerebello-diencephalic±cortical loop and cortical motor (M1, SMA/CMA, PM) and sensory (SII, PPC) areas contralateral to the tremor hand. The main frequency of cerebro-cerebral coupling corresponds to double the tremor frequency. Abbreviations: CMA = cingulate motor area; DICS = Dynamic Imaging of Coherent Sources; EDC = extensor digitorum communis; EMG = electromyography; GPI = internal globus pallidus; M1 = primary motor cortex; MEG = magnetoencephalography; PM = premotor cortex; PPC = posterior parietal cortex; SII = secondary somatosensory cortex; SMA = supplementary motor areas; STN = subthalamic nucleus ã Guarantors of Brain 2003
Medical Hypotheses, 2010
Rest tremor is one of the four main clinical features of Parkinson's disease (PD), besides rigidity, bradykinesia and postural instability. While rigidity, bradykinesia and postural instability can be explained with changes in neurotransmitter concentrations and neuronal activity in basal ganglia, the pathogenesis of parkinsonian tremor is not fully understood. According to the leading hypothesis tremor is generated by neurons or groups of neurons in the basal ganglia which act as central oscillators and generate repetitive impulses to the muscles of the body parts involved. The exact morphological substrate for central oscillators and the mechanisms leading to their activation are still an object of debate. Peripheral neural structures exert modulatory influence on tremor amplitude, but not on tremor frequency.
A brain network model explaining tremor in Parkinson's disease
This paper presents a novel model of tremor in Parkinson's disease (PD) based on extensive literature review as well as novel results stemming from functional stereotactic neurosurgery for the alleviation of tremor in PD. Specifically, evidence that suggests the basal ganglia induces PD tremor via excessive inhibitory output to the thalamus and altered firing patterns which in turn generate rhythmic bursting activity of thalamic cells is presented. Then, evidence that the thalamus generates PD tremor by facilitating the generation and consolidation of rhythmic bursting activity of neurons within its nuclei is also offered. Finally, evidence that the cerebellum may modulate characteristics of PD tremor by treating it as if it was a voluntary motor behavior is presented. Accordingly, the current paper proposes that PD tremor is induced by abnormal basal ganglia activity; it is generated by the thalamus, and modulated or reinforced by the cerebellum.
The nature of tremor circuits in parkinsonian and essential tremor
Brain : a journal of neurology, 2014
Tremor is a cardinal feature of Parkinson's disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient's own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson's disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50-77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34-74 years). Stimulation at near-to tremor frequency entrained trem...
Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor
Clinical Neurophysiology, 2009
Objective: It has been hypothesized that the basic and first harmonic frequency of Parkinsonian tremor are somewhat independent oscillations the biological basis of which remains unclear. Methods: We recorded 64-channel EEG in parallel with EMG of the forearm muscles most affected by rest tremor in 21 PD patients. EMG power spectrum, corticomuscular coherence spectra and EEG power spectra for each EEG electrode were calculated. The dynamics of the coherence and relative EMG and EEG power at the basic (tremor) frequency were calculated by a sliding, overlapping window analysis. Corticomuscular delays and direction of interaction were analysed by the maximizing coherence method for narrow band signals. Results: The contralateral EEG electrodes with maximal coherence were different for the basic and first harmonic frequency. The dynamical coherence curves showed non-parallel time courses for the two frequencies. The mean EEG-EMG and EMG-EEG delays were all around 15-20 ms but significantly longer for the first harmonic than for the basic frequency. Conclusions: Our data indicate different cortical representations and corticomuscular interaction of the basic and first harmonic frequencies of Parkinsonian tremor. Significance: Separate central generators seem to contribute to the tremor via different pathways. Further studies on this complex tremor network are warranted.
Directional communication during movement execution interferes with tremor in Parkinson's disease
Movement disorders : official journal of the Movement Disorder Society, 2018
Both the cerebello-thalamo-cortical circuit and the basal ganglia/cortical motor loop have been postulated to be generators of tremor in PD. The recent suggestion that the basal ganglia trigger tremor episodes and the cerebello-thalamo-cortical circuitry modulates tremor amplitude combines both competing hypotheses. However, the role of the STN in tremor generation and the impact of proprioceptive feedback on tremor suppression during voluntary movements have not been considered in this model yet. The objective of this study was to evaluate the role of the STN and proprioceptive feedback in PD tremor generation during movement execution. Local-field potentials of the STN as well as electromyographical and electroencephalographical rhythms were recorded in tremor-dominant and nontremor PD patients while performing voluntary movements of the contralateral hand during DBS surgery. Effective connectivity between these electrophysiological signals were analyzed and compared to electromyo...
Journal of the Franklin Institute, 2007
Functional correlation between oscillatory neural and muscular signals during tremor can be revealed by coherence estimation. The coherence value in a defined frequency range reveals the interaction strength between the two signals. However, coherence estimation does not provide directional information, preventing the further dissection of the relationship between the two interacting signals. We have therefore investigated causal correlations between the subthalamic nucleus (STN) and muscle in Parkinsonian tremor using adaptive Granger autoregressive (AR) modeling. During resting tremor we analyzed the inter-dependence of local field potentials (LFPs) recorded from the STN and surface electromyograms (EMGs) recorded from the contralateral forearm muscles using an adaptive Granger causality based on AR modeling with a running window to reveal the time-dependent causal influences between the LFP and EMG signals in comparison with coherence estimation. Our results showed that during persistent tremor, there was a directional causality predominantly from EMGs to LFPs corresponding to the significant coherence between LFPs and EMGs at the tremor frequency; and over episodes of transient resting tremor, ARTICLE IN PRESS www.elsevier.com/locate/jfranklin 0016-0032/$30.00 r (M. Ding), jianfeng.feng@warwick.ac.uk (J. Feng), john.stein@physiol.ox.ac.uk (J.F. Stein), tipu.aziz@physiol.ox.ac.uk (T.Z. Aziz), x.liu@ic.ac.uk (X. Liu).
Journal of NeuroEngineering and Rehabilitation, 2020
Background Parkinson’s disease (PD) and essential tremor (ET) are neurodegenerative diseases characterized by movement deficits. Especially in PD, maintaining cyclic movement can be significantly disturbed due to pathological changes in the basal ganglia and the cerebellum. Providing external cues improves timing of these movements in PD and also affects ET. The aim of this study is to determine differences in cortical activation patterns in PD and ET patients during externally and internally cued movements. Methods Eleven PD patients, twelve ET patients, OFF tremor suppressing medication, and nineteen age-matched healthy controls (HC) were included and asked to perform a bimanual tapping task at two predefined cue frequencies. The auditory cue, a metronome sound presented at 2 or 4 Hz, was alternately switched on and off every 30 s. Tapping at two different frequencies were used since it is expected that different brain networks are involved at different frequencies as has been sho...