Characterization of nifedipine solid dispersions (original) (raw)
Related papers
Formulation and Evaluation of Solid dispersion for Dissolution Enhancement of Nifedipine
Nifedipine, a calcium channel blocker antihypertensive drug, is a poorly water soluble drug and belongs to BCS class II. The objective of the research work was to formulate and optimize solid dispersions (SDs) of a poorly water soluble drug, nifedipine, with sodium starch glycollate, croscarmellose sodium, eudragit E-100. Solid dispersions were prepared by solvent evaporation techniques in different weight ratios of polymers. The results indicated that homogeneous or heterogeneous conditions during the preparation methods employed governed the internal structures of the polymer matrices while retaining the drug in an amorphous form. The physical mixtures and solid dispersions were subjected to drug content and dissolution test. The best formulation, nifedipine with croscarmellose sodium in 1:7 ratio, among all was further adsorbed on neusilin US2 to form ternary mixture. The increased dissolution was achieved by more than 70percent and 30percent comparatively to the nifedipine API and marketed product respectively. The tablet dosage form prepared from ternary mixture was stable at stressed conditions 40±2°C and 75±5% RH. The release kinetics of drug from formulation and marketed product follows peppas model. The similar factor f2 was within limit for the product at stressed conditions with the product at room temperature at the same time.
Formulation of solid dispersion and surface solid dispersion of nifedipine: A comparative study
African journal of pharmacy and pharmacology
In this study, an attempt was taken to enhance the solubility and dissolution characteristics of nifedipine, a poorly water soluble calcium channel blocking agent, by preparing solid dispersions (SD) with water soluble carriers; Poloxamer 407, HPMC 5 cPs, polyethylene glycol (PEG) 4000 and 6000 and surface solid dispersions (SSD) with insoluble carriers; sodium starch glycolate (SSG) and croscarmellose sodium (CCS). In vitro dissolution study showed that all the preparations were effective to improve the dissolution of nifedipine to several folds when compared with the drug and physical mixtures (PMs). Drug loading in SDs and SSDs was found uniform and they produced satisfactory results on drug content analysis (95 to 102%), compatibility and thermal analysis. PEG 6000, Poloxamer 407 and SSG were found to be the most effective carriers to enhance the dissolution behavior of nifedipine. SDs with water soluble carriers were found more effective in improving solubility of nifedipine th...
Effect of Water-Soluble Carriers on Dissolution Characteristics of Nifedipine Solid Dispersions
Drug Development and Industrial Pharmacy, 2000
T he solid binary systems of aceclofenac (AC) with β-cyclodextrin (βCD) were prepared by co-grinding, kneading, and co-evaporation, and with PEG 6000 were prepared by the melt-solvent method in 1:1 and 1:2 molar and weight ratios, respectively. The phase solubility study with βCD suggested B S type of curve with a possibility of 1:1 inclusion complex. The solid systems were characterized by in vitro release studies, DSC, and SEM. The results of solid state studies revealed that AC was completely dissolved in the carrier matrix in case of the melt-solvent method, which suggested the possible formation of solid solution with AC to be existed in an amorphous state. All the binary systems exhibited improved dissolution as compared to pure drug. However, the best dissolution enhancement was achieved with the binary system AC: PEG 6000 in 1:2 weight ratio using the melt-solvent method which was subjected to tablet preparation by direct compression. The tablets so compressed complied with in-house and compendial specifications. The in vitro dissolution test was carried out for the formulated tablets and three popular marketed brands of conventional AC tablets. None of the commercial brands showed complete drug release but the formulated tablets exhibited almost complete drug release within 50 min. The dissolution data were further characterized using model-independent parameters DP 30 , DE 50 , t 50% , similarity factor f 2 and difference factor f 1. The tablets formulated incorporating the AC: PEG 6000 (1:2) binary system displayed significantly improved dissolution profile as compared to existing immediate release commercial tablets.
Formulation and Evaluation of Fast Dissolving Tablets of Nifedipine
IJCRT - International Journal of Creative Research Thoughts (IJCRT), 2020
In the present study, there was an attempt to make fast dissolving tablets using the direct dissolution method containing Nifedipine-Manitol solid dispersion. The main objective of the work was to prepare Nifedipine solid dispersion with Manitol to initiate action. The solid dispersion was prepared by the solvent evaporation method and evaluated for cumulative drug release. FDT was formulated by direct compression method using different superdisintegrants such as, CCS and SSG in different range (1-3%). Preformulation studies were performed on the powder mixture for tablets. The flow properties (F1-F18) of the mixture were evaluated by the determining of Carr's index, Hausner ratio and angle of repose. The formulated tablets were evaluated for thickness, hardness, friability, weight variation, wetting time, drug content uniformity, disintegration time and In-vitro dissolution studies. Thus it was concluded that FDT with Nifedipine-Manitol solid dispersion with reduced dissolution time can be prepared by direct compressing method, using co-processed mixture of Cross Carmellose Sodium and Sodium Starch Glycolate in the ratio1% and 2% prepares as superdisintegrants respectively.
Pharmacon: Jurnal Farmasi Indonesia
Nifedipine is a drug that acts as an antihypertensive and anti-angina. Nifedipine is known as a drug with poor water solubility. This characteristic will affect the intrinsic dissolution rate so that it can affect the absorption process and reduce the amount of drug that reaches systemic circulation. One of the strategies to increase the intrinsic dissolution rate is developing nifedipine to solid dispersions form. This study aims to observe the intrinsic dissolution rate of nifedipine after it has been made into a solid dispersion. Four samples were prepared, including three solid dispersions of nifedipine-PVP K-30 and one sample of pure nifedipine. The results of the intrinsic dissolution tests are then interpreted through the intrinsic dissolution rate constant (G). The solid dispersions with concentration of nifedipine-PVP K-30 90%:10%; 75%:25%; 60%:40% (w/w), and pure nifedipine produced G values of 3.63; 9.33; 12.63; and 2.08 µg/mm2. min1, consecutively. It shows that the form...
Formulation and Evaluation of Fast Dissolving Tablet of Nifedipine
2020
In the present study, there was an attempt to make rapidly dissolving tablets using the direct dissolution method containing Nifedipine-Mannitol solid dispersion. The main objective of the work was to prepare nifedipine solid dispersion with Mannitol to initiate action. The solid dispersion was prepared by the solvent evaporation method and evaluated for cumulative drug release. FDT was formulated by a direct compression method using different super Disintegrants such as CCS and SSG in different ranges (1–3 %). Preformation studies were performed on the powder mixture for tablets. The flow properties (F1 – F18) of the mixture were evaluated by determining the Carr's index, the Hausner ratio, and the angle of view. Condensate density, tapped density, Carr's index, Hausner ratio and representation of angles. The formulated tablets were evaluated for thickness, hardness, stability, weight variation, wetting time, drug content uniformity, dissolution time, and invitro dissolutio...
The influence excipients on the dissolution profiles of nifedipine tablets
Scripta Scientifica Pharmaceutica, 2014
Currently a large number of generic drugs are registered in Ukraine for medical use. The advantage of generic drugs is the relatively cheapness compared to innovative medicines, because the creation and registration of generic drugs require less research and, consequently, less material costs, which are nec-ABSTRACT PURPOSE: Study of dissolution profiles of nifedipine tablets from different manufacturers to further assess of their equivalence in vitro, as well as study of the dependence of the dissolution profile on the adjuvants composition. MATERIAL AND METHODS: 3 buffer media with pH 1.2 (hydrochloric acid buffer); 4.5 (acetate buffer); 6.8 (phosphate buffer) was used. The absorptions were observed at 343. RESULTS: The dissolution profiles of nifedipine tablets from different manufacturers have been studied and have been founded that the percentage of nifedipine release from the sample B is higher than from "Corinfar", and the percentage of nifedipine release from "Corinfar" is higher than from the sample A. Adjuvants composition of nifedipine tablets have been studied. It is founded that the inclusion of surfactants, solubilizers and emulsifiers into tablets contribute to increasing of active substance release from the dosage form. CONCLUSIONS: Found that the introduction of surfactants into tablets, solubilizers and emulsifiers help to increase the release of active substance from the dosage form.
The effect of some natural polymers on the solubility and dissolution characteristics of nifedipine
International Journal of Pharmaceutics, 1992
The effect of natural polymers, such as eater-soluble gelatin and egg albumin, on the ~lubili~ and di~olution characteristics of nifedipine has been studied. Comparison of such polymers was carried out by complexation with &cyclodextrin. The interaction of nifedipine with these polymers both in aqueous solution and in the solid state was examined by performing solubility analysis, powder X-ray diffractometry and differential scanning calorimetry measurements. In addition, the surface tension of the samples was evaluated. Solid mixtures of nifedipine and polymer in various ratios were prepared by the kneading technique and their dissolution was carried out according to the dispersed amount method. It was found that water-soluble gelatin and P-cyclodextrin resulted in a significant increase in the rate of dissolution of nifedipine as compared to drug alone. Further, water-soluble gelatin may be particularly useful for the enhancement of dissolution of nifedipine.
International Journal of Pharmaceutics, 2005
Solid dispersions of nifedipine (NIF) with mannitol in preparations containing 10 and 50% (w/w) of drug were manufactured by the hot melt method. Physical properties and the dissolution behaviour of binary systems as physical mixtures and solid dispersions were investigated. In all samples, the crystal structure of NIF was confirmed using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) revealed, there was no interaction between drug and carrier, however, FTIR spectra indicated formation of thermodynamically less stable polymorph of mannitol. The dissolution rate of NIF from solid dispersions was markedly enhanced, the effect being stronger at higher drug loading (50%, w/w, NIF). The dissolution rate enhancement was attributed to improved wetting of NIF crystals due to mannitol particles, attached on the surface, as inspected by means of SEM. Thermal stability of NIF, mannitol and two other potential carbohydrate carriers (lactose and saccharose) during the hot melt procedure was investigated using 1 H NMR. NIF was found to be thermically stable under conditions applied. As expected, among carriers only mannitol demonstrated suitable resistance to high temperature used in experiments.
Impact Of Antisolvent Crystallization On Rate Of Dissolution Of Nifedipine
INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES, 2024
Aim of the present study was to study the effect of the antisolvent method of crystallization/precipitation on the rate of dissolution using different antisolvent for nifedipine. Recrystallization of the drug was done in DMF, DMSO and ethanol using water as antisolvent. Drug Excipient Compatibility Study was confirmed by FTIR method. Differential scanning calorimetry (DSC) of pure drug and it's solvates were done to confirm the crystalline structure of the and molecular symmetry was assured by XRD studies. Impact of the size of drug and it's solvates n dissolution was confirmed by SEM. Dissolution of pure drug and it's solvates were performed by using USP II apparatus and it was observed that DMF solvate has the maximum dissolution amongst all solvates and pure drug. So, it is concluded that the antisolvent process has the significant effect on the dissolution of drug. Since all the techniques (DSC, SEM and XRD) used to assert the effect of the process on the dissolution INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES