Formulation of solid dispersion and surface solid dispersion of nifedipine: A comparative study (original) (raw)
Related papers
Formulation and Evaluation of Solid dispersion for Dissolution Enhancement of Nifedipine
Nifedipine, a calcium channel blocker antihypertensive drug, is a poorly water soluble drug and belongs to BCS class II. The objective of the research work was to formulate and optimize solid dispersions (SDs) of a poorly water soluble drug, nifedipine, with sodium starch glycollate, croscarmellose sodium, eudragit E-100. Solid dispersions were prepared by solvent evaporation techniques in different weight ratios of polymers. The results indicated that homogeneous or heterogeneous conditions during the preparation methods employed governed the internal structures of the polymer matrices while retaining the drug in an amorphous form. The physical mixtures and solid dispersions were subjected to drug content and dissolution test. The best formulation, nifedipine with croscarmellose sodium in 1:7 ratio, among all was further adsorbed on neusilin US2 to form ternary mixture. The increased dissolution was achieved by more than 70percent and 30percent comparatively to the nifedipine API and marketed product respectively. The tablet dosage form prepared from ternary mixture was stable at stressed conditions 40±2°C and 75±5% RH. The release kinetics of drug from formulation and marketed product follows peppas model. The similar factor f2 was within limit for the product at stressed conditions with the product at room temperature at the same time.
Effect of Water-Soluble Carriers on Dissolution Characteristics of Nifedipine Solid Dispersions
Drug Development and Industrial Pharmacy, 2000
T he solid binary systems of aceclofenac (AC) with β-cyclodextrin (βCD) were prepared by co-grinding, kneading, and co-evaporation, and with PEG 6000 were prepared by the melt-solvent method in 1:1 and 1:2 molar and weight ratios, respectively. The phase solubility study with βCD suggested B S type of curve with a possibility of 1:1 inclusion complex. The solid systems were characterized by in vitro release studies, DSC, and SEM. The results of solid state studies revealed that AC was completely dissolved in the carrier matrix in case of the melt-solvent method, which suggested the possible formation of solid solution with AC to be existed in an amorphous state. All the binary systems exhibited improved dissolution as compared to pure drug. However, the best dissolution enhancement was achieved with the binary system AC: PEG 6000 in 1:2 weight ratio using the melt-solvent method which was subjected to tablet preparation by direct compression. The tablets so compressed complied with in-house and compendial specifications. The in vitro dissolution test was carried out for the formulated tablets and three popular marketed brands of conventional AC tablets. None of the commercial brands showed complete drug release but the formulated tablets exhibited almost complete drug release within 50 min. The dissolution data were further characterized using model-independent parameters DP 30 , DE 50 , t 50% , similarity factor f 2 and difference factor f 1. The tablets formulated incorporating the AC: PEG 6000 (1:2) binary system displayed significantly improved dissolution profile as compared to existing immediate release commercial tablets.
The influence excipients on the dissolution profiles of nifedipine tablets
Scripta Scientifica Pharmaceutica, 2014
Currently a large number of generic drugs are registered in Ukraine for medical use. The advantage of generic drugs is the relatively cheapness compared to innovative medicines, because the creation and registration of generic drugs require less research and, consequently, less material costs, which are nec-ABSTRACT PURPOSE: Study of dissolution profiles of nifedipine tablets from different manufacturers to further assess of their equivalence in vitro, as well as study of the dependence of the dissolution profile on the adjuvants composition. MATERIAL AND METHODS: 3 buffer media with pH 1.2 (hydrochloric acid buffer); 4.5 (acetate buffer); 6.8 (phosphate buffer) was used. The absorptions were observed at 343. RESULTS: The dissolution profiles of nifedipine tablets from different manufacturers have been studied and have been founded that the percentage of nifedipine release from the sample B is higher than from "Corinfar", and the percentage of nifedipine release from "Corinfar" is higher than from the sample A. Adjuvants composition of nifedipine tablets have been studied. It is founded that the inclusion of surfactants, solubilizers and emulsifiers into tablets contribute to increasing of active substance release from the dosage form. CONCLUSIONS: Found that the introduction of surfactants into tablets, solubilizers and emulsifiers help to increase the release of active substance from the dosage form.
Formulation and Evaluation of Fast Dissolving Tablets of Nifedipine
IJCRT - International Journal of Creative Research Thoughts (IJCRT), 2020
In the present study, there was an attempt to make fast dissolving tablets using the direct dissolution method containing Nifedipine-Manitol solid dispersion. The main objective of the work was to prepare Nifedipine solid dispersion with Manitol to initiate action. The solid dispersion was prepared by the solvent evaporation method and evaluated for cumulative drug release. FDT was formulated by direct compression method using different superdisintegrants such as, CCS and SSG in different range (1-3%). Preformulation studies were performed on the powder mixture for tablets. The flow properties (F1-F18) of the mixture were evaluated by the determining of Carr's index, Hausner ratio and angle of repose. The formulated tablets were evaluated for thickness, hardness, friability, weight variation, wetting time, drug content uniformity, disintegration time and In-vitro dissolution studies. Thus it was concluded that FDT with Nifedipine-Manitol solid dispersion with reduced dissolution time can be prepared by direct compressing method, using co-processed mixture of Cross Carmellose Sodium and Sodium Starch Glycolate in the ratio1% and 2% prepares as superdisintegrants respectively.
Enhancement of Solubility and Dissolution Rate of Poorly Soluble Drug Nifedipine by Solid Sedds
International Journal of Drug Delivery Technology, 2020
Nifedipine is a dihydropyridine calci channel blocking agent belongs to biopharmaceutical classification system (BCS) class-II mainly applied in the treatment of hypertension and angina-pectoris. The objective of this work is to improve the solubility and dissolution rate of nifedipine by formulating into a solid-self micro emulsifying drug delivery system (solid smedds). Methods: Oil, Surfactant, and cosurfactant were selected by solubility screening study. For the determination of the best emulsion region, a pseudo ternary diagram was prepared. Based on solubility castor oil, tween 80 and polyethylene glycol (PEG) 400 was selected in which SCOSmix (a mixture of surfactant and cosurfactant) was 1:1. Thermodynamic stability study was performed for the determination of stable smedds formulation. These formulations were evaluated for self emulsification time, drug content analysis, robustness to dilution test, particle size analysis, and in vitro diffusion study. The optimized formula...
Formulation and Evaluation of Fast Dissolving Tablet of Nifedipine
2020
In the present study, there was an attempt to make rapidly dissolving tablets using the direct dissolution method containing Nifedipine-Mannitol solid dispersion. The main objective of the work was to prepare nifedipine solid dispersion with Mannitol to initiate action. The solid dispersion was prepared by the solvent evaporation method and evaluated for cumulative drug release. FDT was formulated by a direct compression method using different super Disintegrants such as CCS and SSG in different ranges (1–3 %). Preformation studies were performed on the powder mixture for tablets. The flow properties (F1 – F18) of the mixture were evaluated by determining the Carr's index, the Hausner ratio, and the angle of view. Condensate density, tapped density, Carr's index, Hausner ratio and representation of angles. The formulated tablets were evaluated for thickness, hardness, stability, weight variation, wetting time, drug content uniformity, dissolution time, and invitro dissolutio...
The effect of some natural polymers on the solubility and dissolution characteristics of nifedipine
International Journal of Pharmaceutics, 1992
The effect of natural polymers, such as eater-soluble gelatin and egg albumin, on the ~lubili~ and di~olution characteristics of nifedipine has been studied. Comparison of such polymers was carried out by complexation with &cyclodextrin. The interaction of nifedipine with these polymers both in aqueous solution and in the solid state was examined by performing solubility analysis, powder X-ray diffractometry and differential scanning calorimetry measurements. In addition, the surface tension of the samples was evaluated. Solid mixtures of nifedipine and polymer in various ratios were prepared by the kneading technique and their dissolution was carried out according to the dispersed amount method. It was found that water-soluble gelatin and P-cyclodextrin resulted in a significant increase in the rate of dissolution of nifedipine as compared to drug alone. Further, water-soluble gelatin may be particularly useful for the enhancement of dissolution of nifedipine.
Pharmacon: Jurnal Farmasi Indonesia
Nifedipine is a drug that acts as an antihypertensive and anti-angina. Nifedipine is known as a drug with poor water solubility. This characteristic will affect the intrinsic dissolution rate so that it can affect the absorption process and reduce the amount of drug that reaches systemic circulation. One of the strategies to increase the intrinsic dissolution rate is developing nifedipine to solid dispersions form. This study aims to observe the intrinsic dissolution rate of nifedipine after it has been made into a solid dispersion. Four samples were prepared, including three solid dispersions of nifedipine-PVP K-30 and one sample of pure nifedipine. The results of the intrinsic dissolution tests are then interpreted through the intrinsic dissolution rate constant (G). The solid dispersions with concentration of nifedipine-PVP K-30 90%:10%; 75%:25%; 60%:40% (w/w), and pure nifedipine produced G values of 3.63; 9.33; 12.63; and 2.08 µg/mm2. min1, consecutively. It shows that the form...
Characterization of nifedipine solid dispersions
International Journal of Pharmaceutics, 2002
The sublingual administration of nifedipine (NIF) is currently used in clinical practice. The sublingual administration of NIF solid dispersions (SD), by using a suitable dispenser, appears an interesting approach in the treatment of moderate and severe hypertensive emergencies. With this aim nine SD made of NIF and a low viscosity hydroxypropylmethylcellulose (HPMC) in different ratio were prepared by means of spray-drying technique and their structure was studied. Moreover, the drug dissolution properties from SD were verified. The characteristic peaks of crystalline NIF were not detectable by using the X-ray analysis when the NIF/HPMC ratios were lower than 50/50 w/w. In thermograms obtained from SD, the NIF melting endothermic peak disappeared when NIF/HPMC ratios were lower than 30/70 w/w; the experimental Tg values of SD were lower than the Tg values predicted by Gordon Taylor equation suggesting some type of non-ideality of mixing. In the SD FTIR spectra the NH stretching vibrations and the C O stretch in esteric groups of NIF shift to free NH and C O regions indicating the rupture of intermolecular hydrogen bond in the crystalline structure of NIF. The prepared SD improved the NIF dissolution rate in comparison with that of commercial NIF or NIF/HPMC physical mixtures. Moreover, the concentration of NIF in the dissolution medium increased decreasing the NIF content.
Encapsulation and drug release of poorly water soluble nifedipine from bio-carriers
Journal of Non-Crystalline Solids, 2018
Controlled drug delivery is one of the most intruding field in pharmaceutical research. It is desired for most of the drugs due to safety and efficacy reasons. Another emerging field is improving the bioavailability of poorly water-soluble drugs. By encapsulating such drugs into biodegradable polysaccharide materials both, improved bioavailability and controlled drug release is readily expected. Nifedipine, used as a model drug, was encapsulated within polysaccharide gels by the novel ethanol induced gelation method. Wet materials were processed by supercritical technology to retain its form and structure. Swelling and in-vitro dissolution tests were performed to investigate the swelling of aerogels and release behavior of nifedipine within body fluids. It was observed that guar and xanthan are not the best candidates for oral delivery of nifedipine, since the release was prolonged to 14 days. Oppositely, pectin and alginate are both suitable for nifedipine encapsulation as they released 100% of nifedipine within the first 5 h. Higher drug loading was achieved by pectin aerogels most likely due to their higher surface area.