Performance evaluation of distributed localization techniques for mobile underwater acoustic sensor networks (original) (raw)
Related papers
International Journal of Distributed Sensor Networks, 2014
Recently underwater acoustic sensor networks (UASNs) have drawn much attention because of their great value in many underwater applications where human operation is hard to carry out. In this paper, we introduce and compare the performance of four localization algorithms in UASNs, namely, distance vector-hop (DV-hop), a new localization algorithm for underwater acoustic sensor networks (NLA), large-scale hierarchical localization (LSHL), and localization scheme for large scale underwater networks (LSLS). The four algorithms are all suitable for large-scale UASNs. We compare the localization algorithms in terms of localization coverage, localization error, and average energy consumption. Besides, we analyze the impacts of the ranging error and the number of anchor nodes on the performance of the localization algorithms. Simulations show that LSHL and LSLS perform much better than DV-hop and NLA in localization coverage, localization error, and average energy consumption. The performance of NLA is similar to that of the DV-hop. The advantage of DV-hop and NLA is that the localization results do not rely on the number of anchor nodes; that is, only a small number of anchor nodes are needed for localization. Recently many localization algorithms for WSNs and UASNs have been proposed . The authors classify localization algorithms into two categories [7]: range-based algorithms and range-free algorithms. The former contains the protocols which calculate locations of unknown nodes by estimating absolute point-to-point distances or angles,
A Collaborative Localization algorithm for underwater acoustic sensor networks
In this paper, we propose a Multi-Anchor Nodes Collaborative Localization (MANCL) algorithm, a threedimensional (3D) localization scheme considering anchor nodes and upgrade anchor nodes within two hops for underwater acoustic sensor networks (UASNs). The MANCL algorithm divides the whole localization process into four sub-processes: ordinary node localization process, iterative location estimation process, improved 3D Euclidean distance estimation process and 3D DV-Hop distance estimation process based on two-hop anchor nodes. In the third sub-process, we propose a communication mechanism and a vote mechanism to determine the temporary positions of ordinary nodes. In the fourth sub-process, we use two-hop anchor nodes to help ordinary nodes with localization. We also evaluate and compare the MANCL algorithm with the Large-Scale Localization (LSL) algorithm in terms of localization ratio, average localization error and average energy consumption. Simulation results demonstrate that the MANCL algorithm can achieve a high localization ratio and reduce the localization error while saving more energy to prolong the network lifetime.
Localization with Dive'N'Rise (DNR) beacons for underwater acoustic sensor networks
Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, 2007
In this paper, we address the localization issue in Underwater Sensor Networks (UWSNs). We propose Dive'N'Rise(DNR) Positioning, the novel idea of using DNR beacons for localization. These beacons get their coordinates from GPS while floating above the water, then they dive into water. While sinking and rising, they broadcast their positions. Sensor nodes are localized by passively listening to DNR beacon messages which reduces the communication cost and the energy consumption. We analyze localization success and error for static and mobile UWSNs.
Localization Techniques and Their Challenges in Underwater Wireless Sensor Networks
2014
Underwater Wireless Sensor Networks (UWSNs) are widely used to explore aqueous environment. In UWSN, determining the location of sensor nodes is a critical issue. Sensed data is meaningful only when sensing node is localized. There are many techniques available for localization in Wireless Sensor Network (WSN) but they are not applicable in UWSN. GPS signals cannot be used underwater for localization. Underwater communication is based on acoustic waves. This paper explores the different localization schemes available for UWSN and challenges to meet the localization issue. Node mobility, high propagation delay, time synchronization and high bit error rate are the main challenges that need to be addressed. KeywordsUnderwater Wireless Sensor Network, Localization, Acoustic Communication.
Scalable Localization with Mobility Prediction for Underwater Sensor Networks
2007
Due to adverse aqueous environments, non-negligible node mobility and large network scale, localization for large-scale mobile underwater sensor networks is very challenging. In this paper, by utilizing the predictable mobility patterns of underwater objects, we propose a scheme, called Scalable Localization scheme with Mobility Prediction (SLMP), for underwater sensor networks. In SLMP, localization is performed in a hierarchical way, and the whole localization process is divided into two parts: anchor node localization and ordinary node localization. During the localization process, every node predicts its future mobility pattern according to its past known location information, and it can estimate its future location based on its predicted mobility pattern. Anchor nodes with known locations in the network will control the whole localization process in order to balance the tradeoff between localization accuracy, localization coverage and communication cost. We conduct extensive simulations, and our results show that SLMP can greatly reduce localization communication cost while maintaining relatively high localization coverage and localization accuracy. I. INTRODUCTION Last several years have overseen a rapidly growing interest in underwater sensor networks [1], [10], [16], [27].
EURASIP Journal on Wireless Communications and Networking, 2013
Seaweb is an acoustic communication technology that enables communication between sensor nodes. Seaweb technology utilizes the commercially available telesonar modems that has developed link and network layer firmware to provide a robust undersea communication capability. Seaweb interconnects the underwater nodes through digital signal processing-based modem by using acoustic links between the neighboring sensors. In this paper, we design and investigate a global positioning system-free passive localization protocol by integrating the innovations of levelling and localization with the Seaweb technology. This protocol uses the range data and planar trigonometry principles to estimate the positions of the underwater sensor nodes. Moreover, for precise localization, we consider more realistic conditions namely, (a) small displacement of sensor nodes due to watch circles and (b) deployment of sensor nodes over non-uniform water surface. Once the nodes are localized, we divide the whole network field into circular levels and sectors to minimize the traffic complexity and thereby increases the lifetime of the sensor nodes in the network field. We then form the mesh network inside each of the sectors that increases the reliability. The algorithm is designed in such a way that it overcomes the ambiguous nodes errata and reflected paths and therefore makes the algorithm more robust. The synthetic network geometries are so designed which can evaluate the algorithm in the presence of perfect or imperfect ranges or in case of incomplete data. A comparative study is made with the existing algorithms which proves the efficiency of our newly proposed algorithm.
Performance Evaluation of Localization Algorithms for Mobile Sensor Networks
Journal of Software, 2011
Wireless Sensor Networks (UWSNs) have played a more and more important role in these applications. In this paper, we introduce three localization algorithms for large-scale UWSNs: Node Discovery and Localization Protocol (NDLP), Large-Scale Hierarchical Localization Approach (LSHL) and Localization Scheme for Large Scale underwater networks (LSLS). They are all distributed and range-based localization schemes. Moreover, we compare the localization algorithms in three parameters: localization coverage, localization error and average energy consumption. The simulation results demonstrate that LSLS outperforms LSHL and NDLP in terms of localization coverage. LSHL has lower localization error and energy consumption than LSLS in given conditions. NDLP has higher localization error and energy consumption than LSLS and LSHL, but it performs relatively well when the communication range of nodes is big enough.
IEEE Access, 2020
Underwater Wireless Sensor Networks (UWSNs) offer a huge number of applications, most of which require tagging the sensed data with location information. This makes localization algorithms an essential part of UWSN design. This paper presents a comprehensive survey of the recently proposed literature on localization in UWSNs. The surveyed algorithms are evaluated based on a wide-ranging set of parameters which constitute the elementary features of a localization algorithm. Moreover, in order to familiarize the readers with the basic design of the surveyed algorithms, brief description of the mode of operations of each algorithm is presented along with its strengths and weaknesses. The algorithms are divided into two categories based on their computational design i.e., centralized and distributed. Each category is further subdivided into the algorithms that consider node mobility, and those that do not. Towards the end, we present our view on the future research directions in the area of localization in UWSNs. INDEX TERMS Localization survey, underwater sensor networks, underwater acoustic channel, underwater optical channel, target tracking.
Multi Stage Underwater Sensor Localization using Mobile Beacons
Underwater Sensor Networks (USN) are used for harsh oceanographic missions where human operation is dangerous or impossible. Localization is essential for USNs. It is required for data tagging, node tracking and position-based routing algorithms. Localization is challenging because Global Positioning System (GPS) is not available in underwater; at the same time, existing GPS-less schemes based on fixed landmarks have high communication cost. Such cost is critical in Mobile Underwater Sensor Networks (MUSN), since sensor nodes drift with the ocean currents, thus requiring continuous refresh. In this paper, we propose a multi-stage localization scheme using mobile beacons. The beacons periodically ascent and descent in the water column. When they resurface, they receive new GPS coordinates. Then, they dive to the level of the underwater sensors to advertise these coordinates. In turn, localized sensors become proxy beacons and propagate their own coordinates, etc. This iterative, multi-stage localization is the major innovation of this paper. The goal is to localize the nodes with the smallest number of beacons using proxies instead, yet achieving an adequate accuracy. The major benefit is the reduction in operating costs. Mobility is a critical factor in determining performance. In this paper, performance (i.e., the percentage of localized nodes during a cycle, accuracy, delay and communication cost) is tested in a simulation scenario based on a realistic mobility model. The "Meandering Current Mobility with Surface Effect" (MCM-SE) model -a composite model combining surface and subsurface currents.
A Reverse Localization Scheme for Underwater Acoustic Sensor Networks
Abstract: Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time.