Simultaneous EEG/Functional Magnetic Resonance Imaging at 4 Tesla: Correlates of Brain Activity to Spontaneous Alpha Rhythm During Relaxation (original) (raw)

Simultaneous EEG and fMRI of the alpha rhythm

NeuroReport, 2002

The alpha rhythm in the EEG is 8-12 Hz activity present when a subject is awake with eyes closed. In this study, we used simultaneous EEG and fMRI to make maps of regions whose MRI signal changed reliably with modulation in posterior alpha activity. We scanned 11 subjects as they rested with eyes closed. We found that increased alpha power was correlated with decreased MRI signal in multiple regions of occipital, superior temporal, inferior frontal, and cingulate cortex, and with increased signal in the thalamus and insula. These results are consistent with animal experiments and point to the alpha rhythm as an index of cortical inactivity that may be generated in part by the thalamus. These results also may have important implications for interpretation of resting baseline in fMRI studies.

EEG-correlated fMRI of human alpha activity

NeuroImage, 2003

Electroencephalography-correlated functional magnetic resonance imaging (EEG/fMRI) can be used to identify blood oxygen leveldependent (BOLD) signal changes associated with both physiological and pathological EEG events. Here, we implemented continuous and simultaneous EEG/fMRI to identify BOLD signal changes related to spontaneous power fluctuations in the alpha rhythm (8 -12 Hz), the dominant EEG pattern during relaxed wakefulness. Thirty-two channels of EEG were recorded in 10 subjects during eyes-closed rest inside a 1.5-T magnet resonance (MR) scanner using an MR-compatible EEG recording system. Functional scanning by echoplanar imaging covered almost the entire cerebrum every 4 s. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. The average alpha power over 1-s epochs was derived at several electrode positions using a Fast Fourier Transform. The power time course was then convolved with a canonical hemodynamic response function, down-sampled, and used for statistical parametric mapping of associated signal changes in the image time series. At all electrode positions studied, a strong negative correlation of parietal and frontal cortical activity with alpha power was found. Conversely, only sparse and nonsystematic positive correlation was detected. The relevance of these findings is discussed in view of the current theories on the generation and significance of the alpha rhythm and the related functional neuroimaging findings.

Cortical and Subcortical Correlates of Electroencephalographic Alpha Rhythm Modulation

Journal of Neurophysiology, 2005

Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-leveldependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at ϳ6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of ϳ2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.

Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: Inter-subject variability

Neuroimage, 2006

Simultaneous recording of electroencephalogram/functional magnetic resonance images (EEG/fMRI) was applied to identify blood oxygenation level-dependent (BOLD) changes associated with spontaneous variations of the alpha rhythm, which is considered the hallmark of the brain resting state. The analysis was focused on inter-subject variability associated with the resting state. Data from 7 normal subjects are presented. Confirming earlier findings, three subjects showed a negative correlation between the BOLD signal and the average power time series within the alpha band (8 -12 Hz) in extensive areas of the occipital, parietal and frontal lobes. In small thalamic areas, the BOLD signal was positively correlated with the alpha power. For subjects 3 and 4, who displayed two different states during the data acquisition time, it was shown that the corresponding correlation patterns were different, thus demonstrating the state dependency of the results. In subject 5, the changes in BOLD were observed mainly in the frontal and temporal lobes. Subject 6 only showed positive correlations, thus contradicting the negative BOLD alpha power cortical correlations that were found in most subjects.

Alpha oscillations in brain functioning: an integrative theory

International Journal of …, 1997

. The old concept stating that EEG alpha 10-Hz activity reflects passive or idling states of the brain is giving way to modern views of 10-Hz oscillations in relation to diverse brain functions comprising sensory, motor, and memory Ž . Ž . processes: 1 Spontaneous alpha activity is not pure noise as shown by methods of chaos analysis. 2 E®oked alpha Ž . oscillations patterns precisely time-locked to a stimulus; duration approx. 200᎐300 ms depend on the modality of Ž . stimulation and the recording site. 3 Induced alpha oscillations are initiated by, but not closely time-locked to a Ž . stimulus. 4 10-Hz oscillations are recorded in nervous systems of different complexities, from the human brain to isolated ganglia of invertebrates. The neural origins of 10-Hz oscillations are demonstrated by recordings at the Ž . cellular level. 5 Rather than trying to locate a unique alpha generator, it is preferable to assume that a 'diffuse and distributed alpha system' exists. A particular support for this hypothesis is given by stimulus-dependent hippocampal Ž . alpha responses in the cat brain. 6 The major physiological meaning of 10-Hz oscillations may be comparable to the putative universal role of gamma responses in brain signaling. ᮊ 1997 Elsevier Science B.V.

Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy

NeuroImage, 2003

We used simultaneous electroencephalogram-functional magnetic resonance imaging (EEG-fMRI) and EEG-near infrared spectroscopy (NIRS) to investigate whether changes of the posterior EEG alpha rhythm are correlated with changes in local cerebral blood oxygenation. Cross-correlation analysis of slowly fluctuating, spontaneous rhythms in the EEG and the fMRI signal revealed an inverse relationship between alpha activity and the fMRI-blood oxygen level dependent signal in the occipital cortex. The NIRS-EEG measurements demonstrated a positive cross-correlation in occipital cortex between alpha activity and concentration changes of deoxygenated hemoglobin, which peaked at a relative shift of about 8 s. Our data suggest that alpha activity in the occipital cortex is associated with metabolic deactivation. Mapping of spontaneously synchronizing distributed neuronal networks is thus shown to be feasible.

The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm

Brain Research, 2014

Alpha rhythm is a prominent EEG rhythm observed during resting state and is thought to be related to multiple cognitive processes. Previous simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) studies have demonstrated that alpha rhythm is associated with blood oxygen level dependent (BOLD) signals in several different functional networks. How these networks influence alpha rhythm respectively is unclear. The low-frequency oscillations (LFO) in spontaneous BOLD activity are thought to contribute to the local correlations in resting state. Recent studies suggested that either LFO or other components of fMRI can be further divided into sub-components on different frequency bands. We hypothesized that those BOLD sub-components characterized the contributions of different brain networks to alpha rhythm. To test this hypothesis, EEG and fMRI data were simultaneously recorded from 17 human subjects performing an eyes-close resting state experiment. EEG alpha rhythm was correlated with the filtered fMRI time courses at different frequency bands (0.01-0.08 Hz, 0.08-0.25 Hz, 0.01-0.027 Hz, 0.027-0.073 Hz, 0.073-0.198 Hz, and 0.198-0.25 Hz). The results demonstrated significant relations between alpha rhythm and the BOLD signals in the visual network and in the attention network at LFO band, especially at the very low frequency band (0.01-0.027 Hz).

Functional Connectivity States of Alpha Rhythm Sources in the Human Cortex at Rest: Implications for Real-Time Brain State Dependent EEG-TMS

Brain Sciences

Alpha is the predominant rhythm of the human electroencephalogram, but its function, multiple generators and functional coupling patterns are still relatively unknown. In this regard, alpha connectivity patterns can change between different cortical generators depending on the status of the brain. Therefore, in the light of the communication through coherence framework, an alpha functional network depends on the functional coupling patterns in a determined state. This notion has a relevance for brain-state dependent EEG-TMS because, beyond the local state, a network connectivity overview at rest could provide further and more comprehensive information for the definition of ‘instantaneous state’ at the stimulation moment, rather than just the local state around the stimulation site. For this reason, we studied functional coupling at rest in 203 healthy subjects with MEG data. Sensor signals were source localized and connectivity was studied at the Individual Alpha Frequency (IAF) bet...

Thalamo-cortical mechanisms underlying changes in amplitude and frequency of human alpha oscillations

NeuroImage, 2013

Although a large number of studies have been devoted to establishing correlations between changes in amplitude and frequency of EEG alpha oscillations and cognitive processes, it is currently unclear through which physiological mechanisms such changes are brought about. In this study we use a biophysical model of EEG generation to gain a fundamental understanding of the functional changes within the thalamo-cortical system that might underly such alpha responses. The main result of this study is that, although the physiology of the thalamo-cortical system is characterized by a large number of parameters, alpha responses effectively depend on only three variables. Physiologically, these variables determine the resonance properties of feedforward, cortico-thalamo-cortical, and intra-cortical circuits. By examining the effect of modulations of these resonances on the amplitude and frequency of EEG alpha oscillations, it is established that the model can reproduce the variety of experimentally observed alpha responses, as well as the experimental finding that changes in alpha amplitude are typically an order of magnitude larger than changes in alpha frequency. The modeling results are also in line with the fact that alpha responses often correlate linearly with indices characterizing cognitive processes. By investigating the effect of synaptic and intrinsic neuronal parameters, we find that alpha responses reflect changes in cortical activation, which is consistent with the hypothesis that alpha activity serves to selectively inhibit cortical regions during cognitive processing demands. As an example of how these analyses can be applied to specific experimental protocols, we reproduce benzodiazepine-induced alpha responses and clarify the putative underlying thalamo-cortical mechanisms. The findings reported in this study provide a fundamental physiological framework within which alpha responses observed in specific experimental protocols can be understood.► Alpha responses are determined by three thalamo-cortical subcircuits. ► Alpha responses reflect changes in the level of cortical activation. ► Physiological explanation of benzodiazepine-induced alpha responses responses.

Alpha Oscillations Reduce Temporal Long-Range Dependence in Spontaneous Human Brain Activity

The Journal of neuroscience : the official journal of the Society for Neuroscience, 2018

Ongoing neural dynamics comprise both frequency-specific oscillations and broadband-features, such as long-range dependence (LRD). Despite both being behaviorally relevant, little is known about their potential interactions. In humans, 8-12 Hz α oscillations constitute the strongest deviation from 1/f power-law scaling, the signature of LRD. We postulated that α oscillations, believed to exert active inhibitory gating, downmodulate the temporal width of LRD in slower ongoing brain activity. In two independent "resting-state" datasets (electroencephalography surface recordings and magnetoencephalography source reconstructions), both across space and dynamically over time, power of α activity covaried with the power slope <5 Hz (i.e., greater α activity shortened LRD). Causality of α activity dynamics was implied by its temporal precedence over changes of slope. A model where power-law fluctuations of the α envelope inhibit baseline activity closely replicated our results...