Modulating Toll-like Receptor 7 and 9 Responses as Therapy for Allergy and Autoimmunity (original) (raw)
Related papers
Oligodeoxyribonucleotide-Based Antagonists for Toll-Like Receptors 7 and 9
Journal of Medicinal Chemistry, 2009
Oligodeoxyribonucleotides containing unmethylated CpG motifs act as TLR9 agonists. In this study, we evaluated oligonucleotides containing an unmethylated CpG motif in which two nucleotides adjacent to the CpG dinucleotide were substituted with 2′-O-methylribonucleotides, resulting in TLR7 and TLR9 antagonists. In mouse and human cell cultures, antagonists did not stimulate immune activation but inhibited TLR7 and TLR9 agonist-induced activity. In mice, antagonists inhibited immune responses induced by TLR9 agonists for up to several days, and the inhibition was dose-dependent. Antagonists also inhibited immune responses induced by an RNA-based TLR7/8 agonist but not TLRs 2, 3, 4, or 5 agonists in mice. Additionally, antagonist inhibited TLR9 agonist-induced IL-6 in lupus-prone MRL/lpr mouse spleen cell cultures. These results indicate that antagonists described herein can suppress immune responses induced by TLR7 and TLR9 agonists. Antagonists may be suitable candidates for treating inflammatory and autoimmune diseases where inappropriate or uncontrolled TLR activation has been implicated.
Clinical and Experimental Immunology, 2007
Summary Characterization of the Toll-like receptor (TLR) family and associated signalling pathways provides a key molecular basis for our understanding of the relationship between exposure to microbial products and susceptibility to immune-mediated disorders. Indeed, ligation of TLR controls innate and adaptive immune responses by inducing synthesis of pro- as well as anti-inflammatory cytokines and activation of effector as well as regulatory lymphocytes. TLRs are therefore considered as major targets for the development of vaccine adjuvants, but also of new immunotherapies. Herein, we review the potential of TLR ligands as a novel class of pharmaceuticals for the prevention or treatment of allergic disorders.
Immunology, 2008
Synthetic oligodeoxynucleotides containing unmethylated CpG sequences (CpG-ODNs) stimulate Toll-like receptor-9 (TLR-9), thereby activating innate immunity. Stimulatory CpG-ODNs have been shown to be valuable in modifying immune responses in allergy, infection and cancer. Recently, it has been reported that the stimulation of TLR-9 by endogenous DNA might contribute to the pathogenesis of autoimmune diseases. We here report the identification of a suppressive, guanosine-rich ODN (G-ODN) that inhibited the activation of TLR-9 by stimulatory CpG-ODNs. The G-ODN was suppressive in murine macrophages and dendritic cells as well as in human plasmacytoid dendritic cells in vitro. G-ODN blocked the secretion of tumour necrosis factor-a (TNF-a) and interleukin-12p40 and interfered with the up-regulation of major histocompatibility complex (MHC) class II and costimulatory molecules. G-ODN was inhibitory even at a molar ratio of 1 : 10 (G-ODN:CpG-ODN) and when administered up to 7 hr after stimulation with CpG. G-ODN specifically inhibited TLR-9 but not other TLRs. Inhibition was dependent on a string of five guanosines. G-ODN was also inhibitory in an in vivo model of CpG/galactosamin (GalN) lethal shock. G-ODN interfered with upstream TLR-9 signalling. However, by extensive analysis we can exclude that G-ODN acts at the stage of cellular uptake. G-ODN therefore represents a class of suppressive ODNs that could be of therapeutic use in situations with pathologic TLR-9 activation, as has been proposed for certain autoimmune diseases.
TLR9-based immunotherapy for the treatment of allergic diseases
Immunotherapy, 2017
Toll-like receptors (TLRs), a family of pattern recognition receptors expressed on many cell types of innate immunity, recognize the pathogen-associated molecular patterns of microbes. The hygiene hypothesis suggests that a reduced microbial exposure in early childhood increases the susceptibility to allergic diseases due to deviation in development of the immune system. TLRs are key roles in the right and healthy direction of adaptive immunity with the induction of T-helper 2 toward Th1 immune responses and regulatory T cells. TLR ligand CpG-ODN-based immunomodulation is independent of allergen and it mainly affects innate immune system. While, CpG-oligodeoxynucleotide-based vaccination is allergen specific and induces adaptive immune system. The use of agonists of TLR9 in two distinct strategies of immunotherapy, immunomodulation and vaccination, could be presented as the curative method for the treatment of allergic diseases.
Immunology, 2004
Oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides mimic the immune stimulatory activity of bacterial DNA in vertebrates and are recognized by Toll-like receptor 9 (TLR9). It is also possible to detect immune activation with certain phosphorothioate sequences that lack CpG motifs. These ODN are less potent than CpG ODN and the mechanism by which they stimulate mammalian leucocytes is not understood. We here provide several lines of evidence demonstrating that the effects induced by non-CpG ODN are mediated by TLR9. First, non-CpG ODN could not stimulate cytokine secretion from the splenocytes of TLR9-deficient (TLR9 -/--) mice. Second, immunization of TLR9 +/+ + but not TLR9 -/-mice with non-CpG ODN enhanced antigen-specific antibody responses, although these were T helper type 2 (Th2)-biased. Third, reactivity to non-CpG ODN could be reconstituted by transfection of human TLR9 into nonresponsive cells. In addition, we define a new efficient immune stimulatory motif aside from the CpG dinucleotide that consists of a 5¢-TC dinucleotide in a thymidine-rich background. Non-CpG ODN containing this motif induced activation of human B cells, but lacked stimulation of Th1-like cytokines and chemokines. Our study indicates that TLR9 can mediate either efficient Th1-or Th2-dominated effects depending on whether it is stimulated by CpG or certain non-CpG ODN.
ACS Medicinal Chemistry Letters, 2013
Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immunestimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)mediated immune responses. Chemical modifications such as 2′-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5′-side abrogate TLR9mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5′-end region and the other toward the 3′-end region, incorporated 2′-O-methylribonucleotides selectively preceding the 5′-or 3′-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5′-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents.
Immunology, 2013
Re-expression of recombinase activating genes (RAG) in mature B cells may support autoreactivity by enabling revision of the B-cell receptor (BCR). Recent reports suggest that administration of Toll-like receptor 9 (TLR9)-stimulating CpG oligodeoxynucleotides (ODN) could trigger the manifestation of autoimmune disease and that TLR are involved in the selection processes eliminating autoreactive BCR. The mechanisms involved remain to be elucidated. This prompted us to ask, whether TLR9 could be involved in receptor revision. We found that phosphorothioate-modified CpG ODN (CpG PTO) induced expression of Ku70 and re-expression of RAG-1 in human peripheral blood B lymphocytes and Igk expression in sorted Igj + B cells. Further results revealed unselective binding specificity of CpG PTO-induced immunoglobulin and suggested that CpG PTO engage and/or mimic IgM receptor signalling, an important prerequisite for the initialization of receptor editing or revision. Altogether, our data describe a potential role for TLR9 in receptor revision and suggest that CpG PTO could mimic chromatin-bearing autoantigens by simultaneously engaging the BCR and TLR9 on IgM + B cells.
Journal of Medicinal Chemistry, 2009
Oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides act as agonists of TLR9 and induce Th1-type immune responses. In the present study, we synthesized CpG containing ODNs in which C or G was substituted with 2 0-O-methylribonucleotides, 5-methyl-dC, or 2 0-O-methyl-5-methyl-C and studied their immune stimulatory activity alone and in combination with TLR agonists. In mouse and human primary cell-based assays, modified ODNs did not stimulate immune responses but inhibited TLR9 agonist-induced immune stimulatory activity. In mice, modified ODNs did not induce cytokines but inhibited immune responses induced by agonists of TLR7 and TLR9. Modified ODNs did not inhibit endosomal TLR3-or cell-surface TLR4-agonist-induced cytokines. This study demonstrates that ODNs incorporated with chemical modifications in CpG dinucleotides do not induce immune stimulatory activity but act as antagonists of TLR7 and TLR9 in vitro and in vivo. These types of modifications are commonly employed in antisense sequences and thereby may affect the intended mechanism of action.
Synthesis and immunological activities of novel agonists of toll-like receptor 9
Cellular Immunology, 2010
Novel agonists of TLR9 with two 5 0 -ends and synthetic immune stimulatory motifs, referred to as immune modulatory oligonucleotides (IMOs) are potent agonists of TLR9. In the present study, we have designed and synthesized 15 novel IMOs by incorporating specific chemical modifications and studied their immune response profiles both in vitro and in vivo. Analysis of the immunostimulatory profiles of these IMOs in human and NHP cell-based assays suggest that changes in the number of synthetic immunostimulatory motifs gave only a subtle change in immune stimulation of pDCs as indicated by IFN-a production and pDC maturation while the addition of self-complementary sequences produced more dramatic changes in both pDC and B cell stimulation. All IMOs induced cytokine production in vivo immediately after administration in mice. Representative compounds were also compared for the ability to stimulate cytokine production in vivo (IFN-a and IP-10) in rhesus macaques after intra-muscular administration.
Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy
Clinical <html_ent glyph="@amp;" ascii="&"/> Experimental Allergy, 2005
Background Allergen-specific immunotherapy (SIT) leads to long-term amelioration of T-helper type 2 (Th2)-mediated allergic symptoms and is therefore recommended as a first line therapy for allergies. The major disadvantage of SIT is its low efficiency, requiring treatment over years.