aTOWARDS A PHYLOGENY OF ENTELEGYNE SPIDERS (ARANEAE, ARANEOMORPHAE, ENTELEGYNAE) (original) (raw)

Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae)

Molecular Phylogenetics and Evolution, 2010

Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery of the male decades later brought surprises, especially in the morphology of the male pedipalp, which features (among other things) a retrolateral tibial apophysis (RTA). The presence of an RTA is synapomorphic for a large clade of spiders exclusive of Eresidae. A molecular data matrix based on four loci was constructed to test two alternative hypotheses: (1) penestomines are eresids and the RTA is convergent, or (2) penestomines belong within the RTA clade. Taxon sampling concentrated on the Eresidae and the RTA clade, especially outside of the Dionycha and Lycosoidea. Evolution of the cribellum, conventionally characterized as a primitive araneomorph spinning organ lost multiple times, is explored. Parsimony optimization indicates repeated appearances of the cribellum. Exploration of asymmetric rates of loss and gain in both a likelihood framework and using a Sankoff matrix under parsimony reveals that cribellum homology is supported when losses are two times more likely than gains. We suggest that when complicated characters appear (under parsimony optimization) to evolve multiple times, investigators should consider alternative reconstructions featuring a relatively high rate of loss. Evolution of other morphological characters is also investigated. The results imply revised circumscription of some RTA-clade families, including Agelenidae, Amaurobiidae, Cybaeidae, Dictynidae and Hahniidae. Some nomenclatural changes are formally proposed here; others await further investigation. The family Penestomidae (NEW RANK) is established. Tamgrinia, not Neoramia, is the cribellate sister clade of the ecribellate Agelenidae. Tamgrinia and the subfamily Coelotinae are transferred from the family Amaurobiidae to the family Agelenidae. Zanomys and its relatives are not coelotines but belong to a clade tentatively identified as Macrobuninae.

Phylogeny of entelegyne spiders: affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae). Supplementary data: Figs. S1-S7, four alignments in Nexus format

Molecular Phylogenetics and Evolution, 2010

Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery of the male decades later brought surprises, especially in the morphology of the male pedipalp, which features (among other things) a retrolateral tibial apophysis (RTA). The presence of an RTA is synapomorphic for a large clade of spiders exclusive of Eresidae. A molecular data matrix based on four loci was constructed to test two alternative hypotheses: (1) penestomines are eresids and the RTA is convergent, or (2) penestomines belong within the RTA clade. Taxon sampling concentrated on the Eresidae and the RTA clade, especially outside of the Dionycha and Lycosoidea. Evolution of the cribellum, conventionally characterized as a primitive araneomorph spinning organ lost multiple times, is explored. Parsimony optimization indicates repeated appearances of the cribellum. Exploration of asymmetric rates of loss and gain in both a likelihood framework and using a Sankoff matrix under parsimony reveals that cribellum homology is supported when losses are two times more likely than gains. We suggest that when complicated characters appear (under parsimony optimization) to evolve multiple times, investigators should consider alternative reconstructions featuring a relatively high rate of loss. Evolution of other morphological characters is also investigated. The results imply revised circumscription of some RTA-clade families, including Agelenidae, Amaurobiidae, Cybaeidae, Dictynidae and Hahniidae. Some nomenclatural changes are formally proposed here; others await further investigation. The family Penestomidae (NEW RANK) is established. Tamgrinia, not Neoramia, is the cribellate sister clade of the ecribellate Agelenidae. Tamgrinia and the subfamily Coelotinae are transferred from the family Amaurobiidae to the family Agelenidae. Zanomys and its relatives are not coelotines but belong to a clade tentatively identified as Macrobuninae.

Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea)

Cladistics, 2016

We test the limits of the spider superfamily Araneoidea and reconstruct its interfamilial relationships using standard molecular markers. The taxon sample (363 terminals) comprises for the first time representatives of all araneoid families, including the first molecular data of the family Synaphridae. We use the resulting phylogenetic framework to study web evolution in araneoids. Araneoidea is monophyletic and sister to Nicodamoidea rank. n. Orbiculariae are not monophyletic and also include the RTA clade, Oecobiidae and Hersiliidae. Deinopoidea is paraphyletic with respect to a lineage that includes the RTA clade, Hersiliidae and Oecobiidae. The cribellate orb-weaving family Uloboridae is monophyletic and is sister group to a lineage that includes the RTA Clade, Hersiliidae and Oecobiidae. The monophyly of most Araneoidea families is well supported, with a few exceptions. Anapidae includes holarchaeids but the family remains diphyletic even if Holarchaea is considered an anapid. The orb-web is ancient, having evolved by the early Jurassic; a single origin of the orb with multiple "losses" is implied by our analyses. By the late Jurassic, the orb-web had already been transformed into different architectures, but the ancestors of the RTA clade probably built orb-webs. We also find further support for a single origin of the cribellum and multiple independent losses. The following taxonomic and nomenclatural changes are proposed: the cribellate and ecribellate nicodamids are grouped in the superfamily Nicodamoidea rank n. (Megadictynidae rank res. and Nicodamidae stat. n.). Araneoidea includes 17 families with the following changes: Araneidae is recircumscribed to include nephilines, Nephilinae rank res., Arkyidae rank n., Physoglenidae rank n., Synotaxidae is limited to the genus Synotaxus, Pararchaeidae is a junior synonym of Malkaridae (syn. n.), Holarchaeidae of Anapidae (syn. n.) and Sinopimoidae of Linyphiidae (syn. n.).

Phylogeny of the orb-web building spiders (Araneae, Orbiculariae: Deinopoidea, Araneoidea)

Zoological Journal of the Linnean Society, 1998

This phylogenetic analysis of 31 exemplar taxa treats the 12 families of Araneoidea (Anapidae, Araneidae, Cyatholipidae, Linyphiidae, Mysmenidae, Nesticidae, Pimoidae, Symphytognathidae, Synotaxidae, Tetragnathidae, Theridiidae, and Theridiosomatidae). The data set comprises 93 characters: 23 from male genitalia, 3 from female genitalia, 18 from cephalothorax morphology, 6 from abdomen morphology, 14 from limb morphology, 15 from the spinnerets, and 14 from web architecture and other behaviour. Criteria for tree choice were minimum length parsimony and parsimony under implied weights. The outgroup for Araneoidea is Deinopoidea (Deinopidae and Uloboridae). The preferred shortest tree specifies the relationships ((Uloboridae, Deinopidae) (Araneidae (Tetragnathidae ((Theridiosomatidae (Mysmenidae (Symphytognathidae, Anapidae))) ((Linyphiidae, Pimoidae) ((Theridiidae, Nesticidae) (Cyatholipidae, Synotaxidae))))))). The monophyly of Tetragnathidae (including metines and nephilines), the symphytognathoids, theridiid-nesticid lineage, and Synotaxidae are confirmed. Cyatholipidae are sister to Synotaxidae, not closely related to either the Araneidae or Linyphiidae, as previously suggested. Four new clades are proposed: the cyatholipoids (Cyatholipidae plus Synotaxidae), the 'spineless femur clade' (theridioid lineage plus cyatholipoids), the 'araneoid sheet web builders' (linyphioids plus the spineless femur clade), and the 'reduced piriform clade' (symphytognathoids plus araneoid sheet web builders). The results imply a coherent scenario for web evolution in which the monophyletic orb gives rise to the monophyletic araneoid sheet, which in turn gives rise to the gumfoot web of the theridiid-nesticid lineage. While the spinning complement of single pairs of glands does not change much over the evolution of the group, multiple sets of glands are dramatically reduced in number, implying that derived araneoids are incapable of spinning many silk fibers at the same time.

Progress in erigonine spider phylogeny—the Savignia-group is not monophyletic (Araneae: Linyphiidae)

Organisms Diversity & Evolution, 2010

We present the most inclusive study on the higher-level phylogeny of erigonine spiders, including about 30% of all erigonine genera. By expanding the previously most comprehensive analysis (Miller and Hormiga Cladistics 20:385-442, 2004) we tested the robustness of its results to the addition of closely related taxa, and also the monophyly of the Savignia-group defined by Millidge (Bulletin of the British Arachnological Society 4:1-60, 1977). The character matrix was expanded by adding 18 newly scored species in 15 genera, and also includes all species scored by other authors. This adds up to 98 species in 91 erigonine genera plus 13 outgroup taxa. The parsimony analysis led to eight fully resolved most parsimonious trees (L=1084). The topology concerning the taxa basal to the 'distal erigonines' remained unchanged, and the latter clade still shares 67% of all nodes with the original analysis. The Savignia-group is not monophyletic at genus level with respect to Saloca diceros and Alioranus pastoralis, and the same applies at species level in Diplocephalus and Erigonella. From the Savignia-group, Glyphesis servulus, Diplocephalus cristatus, Savignia frontata, and two representatives each of Erigonella, Dicymbium and Araeoncus combine to form a monophyletic clade.