High doses of CpG oligodeoxynucleotides stimulate a tolerogenic TLR9–TRIF pathway (original) (raw)

Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation

Immunology, 2004

Oligodeoxynucleotides (ODN) with unmethylated CpG dinucleotides mimic the immune stimulatory activity of bacterial DNA in vertebrates and are recognized by Toll-like receptor 9 (TLR9). It is also possible to detect immune activation with certain phosphorothioate sequences that lack CpG motifs. These ODN are less potent than CpG ODN and the mechanism by which they stimulate mammalian leucocytes is not understood. We here provide several lines of evidence demonstrating that the effects induced by non-CpG ODN are mediated by TLR9. First, non-CpG ODN could not stimulate cytokine secretion from the splenocytes of TLR9-deficient (TLR9 -/--) mice. Second, immunization of TLR9 +/+ + but not TLR9 -/-mice with non-CpG ODN enhanced antigen-specific antibody responses, although these were T helper type 2 (Th2)-biased. Third, reactivity to non-CpG ODN could be reconstituted by transfection of human TLR9 into nonresponsive cells. In addition, we define a new efficient immune stimulatory motif aside from the CpG dinucleotide that consists of a 5¢-TC dinucleotide in a thymidine-rich background. Non-CpG ODN containing this motif induced activation of human B cells, but lacked stimulation of Th1-like cytokines and chemokines. Our study indicates that TLR9 can mediate either efficient Th1-or Th2-dominated effects depending on whether it is stimulated by CpG or certain non-CpG ODN.

Recognition of CpG oligodeoxynucleotides by human Toll-like receptor 9 and subsequent cytokine induction

Biochemical and biophysical research communications, 2013

Toll-like receptor 9 (TLR9) recognizes a synthetic ligand, oligodeoxynucleotide (ODN) containing cytosine-phosphate-guanine (CpG). Activation of TLR9 by CpG ODN induces a signal transduction cascade that plays a pivotal role in first-line immune defense in the human body. The three-dimensional structure of TLR9 has not yet been reported, and the ligand-binding mechanism of TLR9 is still poorly understood; therefore, the mechanism of human TLR9 (hTLR9) ligand binding needs to be elucidated. In this study, we constructed several hTLR9 mutants, including truncated mutants and single mutants in the predicted CpG ODN-binding site. We used these mutants to analyze the role of potential important regions of hTLR9 in receptor signaling induced by phosphorothioate (PTO)-modified CpG ODN and CpG ODNs only consist entirely of a phosphodiester (PD) backbone, CpG ODN2006x3-PD that we developed. We found truncated mutants of hTLR9 lost the signaling activity, indicating that both the C- and N-ter...

Characterization of suppressive oligodeoxynucleotides that inhibit Toll-like receptor-9-mediated activation of innate immunity

Immunology, 2008

Synthetic oligodeoxynucleotides containing unmethylated CpG sequences (CpG-ODNs) stimulate Toll-like receptor-9 (TLR-9), thereby activating innate immunity. Stimulatory CpG-ODNs have been shown to be valuable in modifying immune responses in allergy, infection and cancer. Recently, it has been reported that the stimulation of TLR-9 by endogenous DNA might contribute to the pathogenesis of autoimmune diseases. We here report the identification of a suppressive, guanosine-rich ODN (G-ODN) that inhibited the activation of TLR-9 by stimulatory CpG-ODNs. The G-ODN was suppressive in murine macrophages and dendritic cells as well as in human plasmacytoid dendritic cells in vitro. G-ODN blocked the secretion of tumour necrosis factor-a (TNF-a) and interleukin-12p40 and interfered with the up-regulation of major histocompatibility complex (MHC) class II and costimulatory molecules. G-ODN was inhibitory even at a molar ratio of 1 : 10 (G-ODN:CpG-ODN) and when administered up to 7 hr after stimulation with CpG. G-ODN specifically inhibited TLR-9 but not other TLRs. Inhibition was dependent on a string of five guanosines. G-ODN was also inhibitory in an in vivo model of CpG/galactosamin (GalN) lethal shock. G-ODN interfered with upstream TLR-9 signalling. However, by extensive analysis we can exclude that G-ODN acts at the stage of cellular uptake. G-ODN therefore represents a class of suppressive ODNs that could be of therapeutic use in situations with pathologic TLR-9 activation, as has been proposed for certain autoimmune diseases.

The Distinct and Cooperative Roles of Toll-Like Receptor 9 and Receptor for Advanced Glycation End Products in Modulating In Vivo Inflammatory Responses to Select CpG and Non-CpG Oligonucleotides

Nucleic acid therapeutics, 2017

Antisense oligonucleotides (ASOs) are widely accepted therapeutic agents that suppress RNA transcription. While the majority of ASOs are well tolerated in vivo, few sequences trigger inflammatory responses in absence of conventional CpG motifs. In this study, we identified non-CpG oligodeoxy-nucleotide (ODN) capable of triggering an inflammatory response resulting in B cell and macrophage activation in a MyD88- and TLR9-dependent manner. In addition, we found the receptor for advance glycation end product (RAGE) receptor to be involved in the initiation of inflammatory response to suboptimal concentrations of both CpG- and non-CpG-containing ODNs. In contrast, dosing RAGE KO mice with high doses of CpG or non-CpG ODNs lead to a stronger inflammatory response than observed in wild-type mice. Together, our data provide a previously uncharacterized in vivo mechanism contingent on ODN-administered dose, where TLR9 governs the primary response and RAGE plays a distinct and cooperative fu...

Modifications Incorporated in CpG Motifs of Oligodeoxynucleotides Lead to Antagonist Activity of Toll-like Receptors 7 and 9

Journal of Medicinal Chemistry, 2009

Oligodeoxynucleotides (ODNs) containing unmethylated CpG dinucleotides act as agonists of TLR9 and induce Th1-type immune responses. In the present study, we synthesized CpG containing ODNs in which C or G was substituted with 2 0-O-methylribonucleotides, 5-methyl-dC, or 2 0-O-methyl-5-methyl-C and studied their immune stimulatory activity alone and in combination with TLR agonists. In mouse and human primary cell-based assays, modified ODNs did not stimulate immune responses but inhibited TLR9 agonist-induced immune stimulatory activity. In mice, modified ODNs did not induce cytokines but inhibited immune responses induced by agonists of TLR7 and TLR9. Modified ODNs did not inhibit endosomal TLR3-or cell-surface TLR4-agonist-induced cytokines. This study demonstrates that ODNs incorporated with chemical modifications in CpG dinucleotides do not induce immune stimulatory activity but act as antagonists of TLR7 and TLR9 in vitro and in vivo. These types of modifications are commonly employed in antisense sequences and thereby may affect the intended mechanism of action.

Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9

Seminars in Immunology, 2004

Synthetic oligodeoxynucleotides (ODN) expressing non-methylated "CpG motifs" patterned after those present in bacterial DNA have characteristic immunomodulatory effects. CpG DNA is recognized as a pathogen-associated molecular pattern, and triggers a rapid innate immune response. CpG ODN are being harnessed for a variety of therapeutic uses, including as immune adjuvants, for cancer therapy, as anti-allergens, and as immunoprotective agents. The signal transduction pathway mediated by the engagement of CpG DNA with Toll-like receptor 9 (TLR9) is shared with other members of the TLR family. Recent studies demonstrate that formation and maturation of CpG DNA-containing endosomes are regulated by phosphatidylinositol 3 kinases and the Ras-associated GTP-binding protein, Rab5, which are essential for the initiation of TLR9-mediated signaling.

Development of CpG-oligodeoxynucleotides for effective activation of rabbit TLR9 mediated immune responses

PloS one, 2014

CpG-oligodeoxynucleotides (CpG-ODN) are potent immune stimuli being developed for use as adjuvants in different species. Toll-like receptor 9 (TLR9) is the cellular receptor for CpG-ODN in mammalian cells. The CpG-ODN with 18-24 deoxynucleotides that are in current use for human and mouse cells, however, have low activity with rabbit TLR9. Using a cell-based activation assay, we developed a type of CpG-ODN containing a GACGTT or AACGTT motif in 12 phosphorothioate-modified deoxynucleotides with potent stimulatory activity for rabbit TLR9. The developed CpG-ODN have higher activities than other developed CpG-ODN in eliciting antigen-nonspecific immune responses in rabbit splenocytes. When mixed with an NJ85 peptide derived from rabbit hemorrhagic disease virus, they had potent activities to boost an antigen-specific T cell activation and antibody production in rabbits. Compared to Freund's adjuvant, the developed CpG-ODN are capable of boosting a potent and less toxic antibody re...

Immune-Stimulatory Dinucleotide at the 5′-End of Oligodeoxynucleotides Is Critical for TLR9-Mediated Immune Responses

ACS Medicinal Chemistry Letters, 2013

Oligodeoxynucleotides (ODNs) containing a CpG or certain synthetic dinucleotides, referred to as immunestimulatory dinucleotides, induce Toll-like receptor 9 (TLR9)mediated immune responses. Chemical modifications such as 2′-O-methylribonucleotides incorporated adjacent to the immune-stimulatory dinucleotide on the 5′-side abrogate TLR9mediated immune responses. In this study, we evaluated the effect of the location of immune-stimulatory dinucleotides in ODNs on TLR9-mediated immune responses. We designed and synthesized ODNs with two immune-stimulatory dinucleotides, one placed toward the 5′-end region and the other toward the 3′-end region, incorporated 2′-O-methylribonucleotides selectively preceding the 5′-or 3′-immune-stimulatory dinucleotide or both, and studied TLR9-mediated immune responses of these compounds in cell-based assays and in vivo in mice. These studies showed that an immune-stimulatory dinucleotide located closer to the 5′-end is critical for and dictates TLR9-mediated immune responses. These studies provide insights for the use of ODNs when employed as TLR9 agonists and antagonists or antisense agents.

CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo

Respiratory Research, 2007

Background: Bacterial DNA containing motifs of unmethylated CpG dinucleotides (CpG-ODN) initiate an innate immune response mediated by the pattern recognition receptor Toll-like receptor 9 (TLR9). This leads in particular to the expression of proinflammatory mediators such as tumor necrosis factor (TNF-α) and interleukin-1β (IL-1β). TLR9 is expressed in human and murine pulmonary tissue and induction of proinflammatory mediators has been linked to the development of acute lung injury. Therefore, the hypothesis was tested whether CpG-ODN administration induces an inflammatory response in the lung via TLR9 in vivo.

Toll-Like Receptor 9-Independent Suppression of Skin Inflammation by Oligonucleotides

Journal of Investigative Dermatology, 2007

It has been well established that cytidine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) activate innate and adaptive immune responses in keratinocytes by stimulating Toll-like receptor 9 (TLR9)-dependent signaling pathways. However, as Dorn et al. report, keratinocytes possess another, yet uncharacterized, TLR9-independent mechanism for the recognition of ODNs. Surprisingly, the activation of the pathway leads to suppressed chemokine production in vitro and decreased skin inflammation in vivo.