Magnetic and Morphological Properties of Ferrofluid-Impregnated Hydroxyapatite/Collagen Scaffolds (original) (raw)
Related papers
Development of Magnetically Active Scaffolds for Bone Regeneration
Nanomaterials (Basel, Switzerland), 2018
This work reports on the synthesis, with the thermally induced phase separation (TIPS) technique, of poly (l-lactide) (PLLA) scaffolds containing Fe-doped hydroxyapatite (FeHA) particles for bone regeneration. Magnetization curves and X-ray diffraction indicate two magnetic particle phases: FeHA and magnetite Fe₃O₄. Magnetic nanoparticles (MNPs) are approximately 30 ± 5 nm in width and 125 ± 25 nm in length, and show typical ferromagnetic properties, including coercivity and rapid saturation magnetization. Scanning electron microscopy (SEM) images of the magnetic scaffolds reveal their complex morphology changes with MNP concentration. Similarly, at compositions of approximately 20% MNPs, the phase separation changes, passing from solid⁻liquid to liquid⁻liquid as revealed by the hill-like structures, with low peaks that give the walls in the SEM images a surface pattern of micro-ruggedness typical of nucleation mechanisms and growth. In vitro degradation experiments, carried out for...
Journal of The Royal Society Interface, 2013
In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small pu...
Journal of The Royal Society Interface, 2013
In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small pu...
Journal of Nanobiotechnology, 2012
Background: Superparamagnetic nanoparticles (MNPs) have been progressively explored for their potential in biomedical applications and in particular as a contrast agent for diagnostic imaging, for magnetic drug delivery and more recently for tissue engineering applications. Considering the importance of having safe MNPs for such applications, and the essential role of iron in bone remodelling, this study developed and analysed novel biocompatible and bioreabsorbable superparamagnetic nanoparticles, that avoid the use of poorly tolerated magnetite based nanoparticles, for bone tissue engineering applications. Results: MNPs were obtained by doping hydroxyapatite (HA) with Fe ions, by directly substituting Fe 2+ and Fe 3+ into the HA structure yielding superparamagnetic bioactive phase. In the current study, we have investigated the effects of increasing concentrations (2000 μg/ml; 1000 μg/ml; 500 μg/ml; 200 μg/ml) of FeHA MNPs in vitro using Saos-2 human osteoblast-like cells cultured for 1, 3 and 7 days with and without the exposure to a static magnetic field of 320 mT. Results demonstrated not only a comparable osteoblast viability and morphology, but increased in cell proliferation, when compared to a commercially available Ha nanoparticles, even with the highest dose used. Furthermore, FeHA MNPs exposure to the static magnetic field resulted in a significant increase in cell proliferation throughout the experimental period, and higher osteoblast activity. In vivo preliminary results demonstrated good biocompatibility of FeHA superparamagnetic material four weeks after implantation into a critical size lesion of the rabbit condyle.
Journal of Materials Science: Materials in Medicine, 2010
Our purpose was obtaining and characterizing a complex composite system with multifunctional role: bone graft material and hyperthermia generator necessary for bone cancer therapy. The designed system was a magnetite enriched collagen/hydroxyapatite composite material, obtained by a co-precipitation method. Due to the applied electromagnetic field the magnetite will induce hyperthermia and cause tumoral cell apoptosis. The complex bone graft system was characterised by XRD, FTIR and SEM, while the hyperthermia was quantify by measuring the temperature increase due to the applied alternative electromagnetical field.
Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering
The design and fabrication of advanced biocompatible and bioresorbable materials able to mimic the natural tissues present in the human body constitutes an important challenge in regenerative medicine. The size-dependent properties that materials exhibit at the nanoscale as a consequence of their higher surface-to-volume ratio have opened a wide range of opportunities for applications in almost every imaginable field. In this regard, the incorporation of magnetic nanoparticles (MNPs) into biocompatible scaffold formulations provides final materials with additional multifunctionality and reinforced mechanical properties for bone tissue engineering applications. In addition to the biological implications due to their magnetic character (i.e., magnetic stimuli that favor the cell adhesion/proliferation, guiding of growth factors loaded magnetic nanocarriers, etc.), the ability of superparamagnetic scaffolds to simultaneously show magnetic hyperthermia when a dynamic external magnetic field is applied become promising to treat critical bone defects caused by malignant bone cancer through a combined therapy consisting of on demand temperature increase and thermally activated drug delivery. In this paper, we will comment on several different approaches to construct magnetic scaffolds with hyperthermia properties for bone tissue engineering. Experimental details about the design, fabrication and physicochemical characterization of a representative set of magnetic scaffolds have been described, focusing on their hyperthermia properties. The following synthesis procedures to magnetize biocompatible scaffolds reported in this paper covers dip coating of biocompatible gelatin-based scaffolds in aqueous MNPs dispersions, iron doping of the hydroxyapatite (HA) crystal structure, and incorporation of magnetic bioresorbable HA nanoparticles into poly-ε-caprolactone-based polymeric matrices.
A novel route in bone tissue engineering: Magnetic biomimetic scaffolds
Acta Biomaterialia, 2010
In recent years, interest in tissue engineering and its solutions has increased considerably. In particular, scaffolds have become fundamental tools in bone graft substitution and are used in combination with a variety of bio-agents. However, a long-standing problem in the use of these conventional scaffolds lies in the impossibility of re-loading the scaffold with the bio-agents after implantation. This work introduces the magnetic scaffold as a conceptually new solution. The magnetic scaffold is able, via magnetic driving, to attract and take up in vivo growth factors, stem cells or other bio-agents bound to magnetic particles. The authors succeeded in developing a simple and inexpensive technique able to transform standard commercial scaffolds made of hydroxyapatite and collagen in magnetic scaffolds. This innovative process involves dip-coating of the scaffolds in aqueous ferrofluids containing iron oxide nanoparticles coated with various biopolymers. After dip-coating, the nanoparticles are integrated into the structure of the scaffolds, providing the latter with magnetization values as high as 15 emu g À1 at 10 kOe. These values are suitable for generating magnetic gradients, enabling magnetic guiding in the vicinity and inside the scaffold. The magnetic scaffolds do not suffer from any structural damage during the process, maintaining their specific porosity and shape. Moreover, they do not release magnetic particles under a constant flow of simulated body fluids over a period of 8 days. Finally, preliminary studies indicate the ability of the magnetic scaffolds to support adhesion and proliferation of human bone marrow stem cells in vitro. Hence, this new type of scaffold is a valuable candidate for tissue engineering applications, featuring a novel magnetic guiding option.
Polymers, 2021
Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity paramete...
PLoS ONE, 2012
In case of degenerative disease or lesion, bone tissue replacement and regeneration is an important clinical goal. In particular, nowadays, critical size defects rely on the engineering of scaffolds that are 3D structural supports, allowing cellular infiltration and subsequent integration with the native tissue. Several ceramic hydroxyapatite (HA) scaffolds with high porosity and good osteointegration have been developed in the past few decades but they have not solved completely the problems related to bone defects. In the present study we have developed a novel porous ceramic composite made of HA that incorporates magnetite at three different ratios: HA/Mgn 95/5, HA/Mgn 90/10 and HA/Mgn 50/ 50. The scaffolds, consolidated by sintering at high temperature in a controlled atmosphere, have been analysed in vitro using human osteoblast-like cells. Results indicate high biocompatibility, similar to a commercially available HA bone graft, with no negative effects arising from the presence of magnetite or by the use of a static magnetic field. HA/Mgn 90/10 was shown to enhance cell proliferation at the early stage. Moreover, it has been implanted in vivo in a critical size lesion of the rabbit condyle and a good level of histocompatibility was observed. Such results identify this scaffold as particularly relevant for bone tissue regeneration and open new perspectives for the application of a magnetic field in a clinical setting of bone replacement, either for magnetic scaffold fixation or magnetic drug delivery.
Polymers, 2021
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation...