Epidermal growth factor receptor levels are reduced in mice with targeted disruption of the protein kinase A catalytic subunit (original) (raw)

Antitumor Activity of Combined Blockade of Epidermal Growth Factor Receptor and Protein Kinase A

JNCI Journal of the National Cancer Institute, 1996

Purpose: On the basis of our previous observations of a cooperative antiproliferative effect of anti-EGFR MAb 528 and 8-Cl-cAMP in human cancer cell lines in vitro, we evaluated the anticancer activity in vivo of the combination of an anti-EGFR MAb (MAb C225) and 8-Cl-cAMP. Methods: Athymic mice were injected subcutaneously with 10 7 human colon carcinoma GEO cells. After 7 days, when established tumor xenografts of 030-0.35 cm 3 were detectable, 10-15 mice per group were treated intraperitoneally twice weekly with different doses of 8-Cl-cAMP and/or MAb C225.

8-Cl-cAMP antagonizes mitogen-activated protein kinase activation and cell growth stimulation induced by epidermal growth factor

British journal of cancer, 1999

The growth factor-activated mitogenic pathways are often disregulated in tumour cells and, therefore, they can provide specific molecular targets for novel anti-tumour approaches. 8-Chloro-cAMP (8-Cl-cAMP), a synthetic cAMP analogue, is a novel anti-tumour agent that has recently undergone clinical evaluation. We investigated the effects of 8-Cl-cAMP on the epidermal growth factor (EGF)/EGF receptor (EGF-R) signalling in human epidermoid cancer KB cells, which are responsive to the mitogenic stimulus of EGF. We found that the growth-promoting activity of EGF was completely abolished when EGF treatment was performed in combination with 8-Cl-cAMP. The inhibition of the EGF-induced proliferation by 8-Cl-cAMP was paralleled by the blockade of the EGF-stimulated activation of mitogen-activated protein kinases (MAPK), ERK-1 and ERK-2. Conversely, we found an increase of EGF-R expression and EGF-R tyrosine phosphorylation when KB cells were growth inhibited by 8-Cl-cAMP. Moreover, the acti...

Up-regulated EGF receptors undergo to rapid internalization and ubiquitin-dependent degradation in human cancer cells exposed to 8-Cl-cAMP

FEBS Letters, 1999

8-Cl-cAMP, a cAMP analogue that antagonizes type I cAMP-dependent protein kinase, is a novel anti-tumor agent presently under investigation in clinical trials. Herein we report the effects of this agent on epidermal growth factor receptor expression and degradation in human KB cancer cells. Exposure to 10 W WM 8-Cl-cAMP for 48 h induced a 65% increase in epidermal growth factor receptor surface expression while the receptor synthesis was 22-fold enhanced. Analysis of epidermal growth factor-dependent receptor internalization in 8-Cl-cAMPtreated cells showed a higher endocytosis rate as well as an accelerated degradation which occurred together with an increased receptor ubiquitination. The enhanced degradation of epidermal growth factor receptor correlated with the lack of epidermal growth factor-induced proliferation and mitogenactivated protein kinase stimulation. The disregulation of epidermal growth factor receptor internalization and ubiquitindependent degradation could underlay a new mechanism of the anti-tumor activity of 8-Cl-cAMP suggesting its combination with agents that disrupt epidermal growth factor receptor signalling.

Stimulation of Mitogenic Pathways through Kinase-Impaired Mutants of the Epidermal Growth Factor Receptor

Experimental Cell Research, 2001

Two residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the ␥-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [ 3 H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [ 3 H]thymidine into DNA in response to EGF. In the present study, EGF receptors mutated at lysine-721 or aspartate-813 (K721R and D813A, respectively), as well as wild-type EGF receptors, were expressed in the same cellular background, Chinese hamster ovary cells, and side-by-side experiments were performed to investigate possible signaling-related differences. Our results indicate that while there are measurable differences in the abilities of the two mutant receptors to stimulate [ 3 H]thymidine incorporation between 20 and 24 h after addition of EGF, these differences cannot be correlated with significant differences in EGFstimulated tyrosine phosphorylation of mutant EGF receptor and endogenous ErbB2, the extent of receptor internalization, EGF-stimulated ion uptake, stimulation of SHC activity, or receptor association with Grb2. Flow cytometric data suggest that populations of cells expressing either kinase-impaired mutant EGF receptor progress similarly into S phase in response to addition of EGF. These observations suggest that D813A and K721R retain similar ability to stimulate mitogenic signaling events through transactivation of ErbB2 with only subtle temporal differences, and they emphasize the importance of expressing mutant receptors in an identical cellular context to make valid comparisons of functions.

Novel mechanism for regulation of epidermal growth factor receptor endocytosis revealed by protein kinase A inhibition

Molecular biology of the cell, 2002

Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not...

Signal Transduction by Epidermal Growth Factor Receptor

Cold Spring Harbor Symposia on Quantitative Biology, 1988

Many cell types display two classes of epidermal growth factor receptor (EGFR) as judged from EGF binding studies; i.e., a major class of low affinity EGFR and a minor class of high affinity EGFR. We have studied their respective contribution to the cascade of events elicited by EGF in human A431 carcinoma cells, using anti-EGFR mAb 2E9. This antibody specifically blocks EGF binding to low affinity EGFR, without activating receptors in intact cells, and thus enables us to study the effects of exclusive EGF binding to high affinity EGFR. We show that blocking of low affinity EGFR by mAb 2E9 has almost no effect on the activation of the receptor protein-tyrosine kinase by EGF, suggesting that EGFR kinase activation occurs exclusively through the subclass of high affinity EGFR (5-10%). In addition, we provide evidence that high affinity EGFR exists both in monomeric and dimeric forms, and that cross-phos-

Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF

2001

The ErbB family of receptors, which includes the epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4, mediate signaling by EGF-like polypeptides. To better understand the role of the EGFR tyrosine kinase, we analyzed signaling by a kinase-inactive EGFR (K721M) in ErbB-devoid 32D cells. K721M alone exhibited no detectable signaling capacity, whereas coexpression of K721M with ErbB2, but not ErbB3 or ErbB4, resulted in EGF-dependent mitogen-activated protein kinase (MAPK) activation. The kinase activity, but not tyrosine phosphorylation, of ErbB2 was required for EGF-induced MAPK activation. The presence of tyrosine phosphorylation sites in K721M was not a requisite for signaling, indicating that transphosphorylation of K721M by ErbB2 was not an essential mechanism of receptor activation. Conversely, the mutated kinase domain of K721M (residues 648-973) and tyrosine phosphorylation of at least one of the receptors were necessary. EGF was found to activate the pro-survival protein kinase Akt in stable cell lines expressing K721M and ErbB2 but, unlike cells expressing wild-type EGFR, was incapable of activating signal transducers and activators of transcription (STAT) or driving cell proliferation. These results demonstrate that EGFR-ErbB2 oligomers are potent activators of MAPK and Akt, and this signaling does not require EGFR kinase activity. The epidermal growth factor receptor (EGFR, 1 ErbB1, HER1) is the prototypical member of the ErbB family of receptors, which includes ErbB2 (HER2, neu), ErbB3 (HER3), and ErbB4 (HER4) (reviewed in Refs. 1-3). The ErbBs mediate signaling by a large number of growth factors that are structurally related to EGF such as transforming growth factor-␣ or amphiregulin. This family of receptors plays critical roles in the proliferation, migration, survival, and differentiation of target cells, and dysregulation of signaling by ErbBs has been implicated in the pathogenesis and progression of human cancers (2,

Signal transduction by epidermal growth factor occurs through the subclass of high affinity receptors

Journal of Cell Biology, 1989

Many cell types display two classes of epidermal growth factor receptor (EGFR) as judged from EGF binding studies; i.e., a major class of low affinity EGFR and a minor class of high affinity EGFR. We have studied their respective contribution to the cascade of events elicited by EGF in human A431 carcinoma cells, using anti-EGFR mAb 2E9. This antibody specifically blocks EGF binding to low affinity EGFR, without activating receptors in intact cells, and thus enables us to study the effects of exclusive EGF binding to high affinity EGFR. We show that blocking of low affinity EGFR by mAb 2E9 has almost no effect on the activation of the receptor protein-tyrosine kinase by EGF, suggesting that EGFR kinase activation occurs exclusively through the subclass of high affinity EGFR (5-10%). In addition, we provide evidence that high affinity EGFR exists both in monomeric and dimeric forms, and that cross-phos