Reaction Intermediates in the Catalytic Mechanism of Escherichia coli MutY DNA Glycosylase (original) (raw)

Recent advances in the structural mechanisms of DNA glycosylases

DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities.

Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats

Nucleic Acids Research, 2007

3-methyladenine DNA glycosylases initiate repair of cytotoxic and promutagenic alkylated bases in DNA. We demonstrate by comparative modelling that Bacillus cereus AlkD belongs to a new, fifth, structural superfamily of DNA glycosylases with an alpha-alpha superhelix fold comprising six HEATlike repeats. The structure reveals a wide, positively charged groove, including a putative base recognition pocket. This groove appears to be suitable for the accommodation of double-stranded DNA with a flipped-out alkylated base. Site-specific mutagenesis within the recognition pocket identified several residues essential for enzyme activity. The results suggest that the aromatic side chain of a tryptophan residue recognizes electron-deficient alkylated bases through stacking interactions, while an interacting aspartate-arginine pair is essential for removal of the damaged base. A structural model of AlkD bound to DNA with a flipped-out purine moiety gives insight into the catalytic machinery for this new class of DNA glycosylases.

Role for Lysine 142 in the Excision of Adenine from A:G Mispairs by MutY DNA Glycosylase of Escherichia coli

Biochemistry, 2000

MutY participates in the repair of oxidatively damaged DNA by excising adenine from dA: dG and dA:8-oxodG mispairs; this DNA glycosylase can be cross-linked to DNA through Lys-142. We have investigated the properties of a mutant protein in which Lys-142 is replaced by glutamine. Using the rifampicin resistance assay, MutY K142Q was shown to complement the mutY mutator phenotype to the same extent as wild-type MutY. Although MutY K142Q does not form a Schiff base with DNA, it retains in part the catalytic properties of wild-type enzyme. The K142Q mutation selectively impairs processing of DNA containing dA:dG mispairs but not that of substrates containing dA:8-oxodG. Decreased substrate processing is mediated primarily via an increase in K D (21.8 nM for MutY vs 298 nM for MutY K142Q). The catalytic constant, measured in single turnover experiments, was not significantly affected. At pH < 6.0, the activity of MutY K142Q on the dA:dG mispair was approximately the same as for wild-type protein, suggesting that a dG(anti) to dG(syn) transition is effected at low pH. The three-dimensional structure of the catalytic domain of MutY K142Q, determined at 1.35 Å resolution, shows no significant differences between wild-type and mutant protein, indicating that Lys-142 is not critical for maintaining the conformation of MutY. We conclude that Lys-142 recognizes guanine in the dA:dG mispair, helping position this residue in the syn conformation and facilitating binding of substrate DNA. Lys-142 is not involved in the catalytic steps of base excision.

Uracil-DNA glycosylase-DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects

Proceedings of the National Academy of Sciences, 2000

Enzymatic transformations of macromolecular substrates such as DNA repair enzyme͞DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil-DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme-DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG͞DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.

Excised damaged base determines the turnover of human N-methylpurine-DNA glycosylase

Dna Repair, 2009

N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a wide variety of alkylated, deaminated, and lipid peroxidation-induced purine adducts. In this study, we tested the role of excised base on MPG enzymatic activity. After the reaction, MPG produced two products: free damaged base and AP-site containing DNA. Our results showed that MPG excises 1,N6-ethenoadenine (ɛA) from ɛA-containing oligonucleotide (ɛA-DNA) at a similar or slightly increased efficiency than it does hypoxanthine (Hx) from Hx-containing oligonucleotide (Hx-DNA) under similar conditions. Real-time binding experiments by surface plasmon resonance (SPR) spectroscopy suggested that both the substrate DNAs have a similar equilibrium binding constant (KD) towards MPG, but under single-turnover (STO) condition there is apparently no effect on catalytic chemistry; however, the turnover of the enzyme under multiple-turnover (MTO) condition is higher for ɛA-DNA than it is for Hx-DNA. Real-time binding experiments by SPR spectroscopy further showed that the dissociation of MPG from its product, AP-site containing DNA, is faster than the overall turnover of either Hx- or ɛA-DNA reaction. We thereby conclude that the excised base plays a critical role in product inhibition and, hence, is essential for MPG glycosylase activity. Thus, the results provide the first evidence that the excised base rather than AP-site could be rate-limiting for DNA-glycosylase reactions.

Depurination of N7-Methylguanine by DNA Glycosylase AlkD Is Dependent on the DNA Backbone

DNA glycosylase AlkD excises N7-methylguanine (7mG) by a unique but unknown mechanism, in which the damaged nucleotide is positioned away from the protein and the phosphate backbone is distorted. Here, we show by methylphosphonate substitution that a phosphate proximal to the lesion has a significant effect on the rate enhancement of 7mG depurination by the enzyme. Thus, instead of a conventional mechanism whereby protein side chains participate in N-glycosidic bond cleavage, AlkD remodels the DNA into an active site composed exclusively of DNA functional groups that provide the necessary chemistry to catalyze depurination.

The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases 1,2. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket 2–5. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. Here we present the first, to our knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge– dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials 6,7. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism 5. Hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.

Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA

Three high-resolution crystal structures of DNA complexes with wild-type and mutant human uracil-DNA glycosylase (UDG), coupled kinetic characterizations and comparisons with the refined unbound UDG structure help resolve fundamental issues in the initiation of DNA base excision repair (BER): damage detection, nucleotide flipping versus extrahelical nucleotide capture, avoidance of apurinic/apyrimidinic (AP) site toxicity and coupling of damage-specific and damage-general BER steps. Structural and kinetic results suggest that UDG binds, kinks and compresses the DNA backbone with a 'Ser–Pro pinch' and scans the minor groove for damage. Concerted shifts in UDG simultaneously form the catalytically competent active site and induce further compression and kinking of the double-stranded DNA backbone only at uracil and AP sites, where these nucleotides can flip at the phosphate– sugar junction into a complementary specificity pocket. Unexpectedly, UDG binds to AP sites more tightly and more rapidly than to uracil-containing DNA, and thus may protect cells sterically from AP site toxicity. Furthermore, AP-endonuclease, which catalyzes the first damage-general step of BER, enhances UDG activity, most likely by inducing UDG release via shared minor groove contacts and flipped AP site binding. Thus, AP site binding may couple damage-specific and damage-general steps of BER without requiring direct protein–protein interactions. Keywords: abasic sites/crystal structure/DNA repair/ protein–DNA interactions