Transient Localized Patterns in Noise-Driven Reaction-Diffusion Systems (original) (raw)
Related papers
Activation process in excitable systems with multiple noise sources: Large number of units
Physical Review E, 2015
We study the activation process in large assemblies of type II excitable units whose dynamics is influenced by two independent noise terms. The mean-field approach is applied to explicitly demonstrate that the assembly of excitable units can itself exhibit macroscopic excitable behavior. In order to facilitate the comparison between the excitable dynamics of a single unit and an assembly, we introduce three distinct formulations of the assembly activation event. Each formulation treats different aspects of the relevant phenomena, including the threshold-like behavior and the role of coherence of individual spikes. Statistical properties of the assembly activation process, such as the mean time-to-first pulse and the associated coefficient of variation, are found to be qualitatively analogous for all three formulations, as well as to resemble the results for a single unit. These analogies are shown to derive from the fact that global variables undergo a stochastic bifurcation from the stochastically stable fixed point to continuous oscillations. Local activation processes are analyzed in the light of the competition between the noise-led and the relaxation-driven dynamics. We also briefly report on a system-size anti-resonant effect displayed by the mean time-to-first pulse.
Dynamical effects induced by long range activation in a nonequilibrium reaction-diffusion system
Physical Review E, 2002
We show both experimentally and numerically that the time scales separation introduced by long range activation can induce oscillations and excitability in nonequilibrium reaction-diffusion systems that would otherwise only exhibit bistability. Namely, we show that in the Chlorite-Tetrathionate reaction, where the autocalytic species H + diffuses faster than the substrates, the spatial bistability domain in the nonequilibrium phase diagram is extended with oscillatory and excitability domains. A simple model and a more realistic model qualitatively account for the observed dynamical behavior. The latter model provides quantitative agreement with the experiments.
Dichotomous-noise-induced pattern formation in a reaction-diffusion system
Physical Review E, 2013
We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR)-membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.
Effects of noise in excitable systems
Physics Reports, 2004
We review the behavior of theoretical models of excitable systems driven by Gaussian white noise. We focus mainly on those general properties of such systems that are due to noise, and present several applications of our ÿndings in biophysics and lasers.
Localized patterns and semi-strong interaction, a unifying framework for reaction–diffusion systems
IMA Journal of Applied Mathematics, 2021
Systems of activator–inhibitor reaction–diffusion equations posed on an infinite line are studied using a variety of analytical and numerical methods. A canonical form is considered, which contains all known models with simple cubic autocatalytic nonlinearity and arbitrary constant and linear kinetics. Restricting attention to models that have a unique homogeneous equilibrium, this class includes the classical Schnakenberg and Brusselator models, as well as other systems proposed in the literature to model morphogenesis. Such models are known to feature Turing instability, when activator diffuses more slowly than inhibitor, leading to stable spatially periodic patterns. Conversely in the limit of small feed rates, semi-strong interaction asymptotic analysis shows existence of isolated spike-like patterns. This paper describes the broad bifurcation structures that connect these two regimes. A certain universal two-parameter state diagram is revealed in which the Turing bifurcation be...
Physical Review E, 2017
We introduce a coarse-grained stochastic model for the spontaneous activity of neuronal cultures to explain the phenomenon of noise focusing, which entails localization of the noise activity in excitable networks with metric correlations. The system is modeled as a continuum excitable medium with a state-dependent spatial coupling that accounts for the dynamics of synaptic connections. The most salient feature is the emergence at the mesoscale of a vector field V(r), which acts as an advective carrier of the noise. This entails an explicit symmetry breaking of isotropy and homogeneity that stems from the amplification of the quenched fluctuations of the network by the activity avalanches, concomitant with the excitable dynamics. We discuss the microscopic interpretation of V(r) and propose an explicit construction of it. The coarse-grained model shows excellent agreement with simulations at the network level. The generic nature of the observed phenomena is discussed.
Stationary multiple spots for reaction–diffusion systems
Journal of Mathematical Biology, 2008
In this paper, we review analytical methods for a rigorous study of the existence and stability of stationary, multiple spots for reaction-diffusion systems. We will consider two classes of reaction-diffusion systems: activator-inhibitor systems (such as the Gierer-Meinhardt system) and activator-substrate systems (such as the Gray-Scott system or the Schnakenberg model). The main ideas are presented in the context of the Schnakenberg model, and these results are new to the literature. We will consider the systems in a two-dimensional, bounded and smooth domain for small diffusion constant of the activator. Existence of multi-spots is proved using tools from nonlinear functional analysis such as Liapunov-Schmidt reduction and fixed-point theorems. The amplitudes and positions of spots follow from this analysis. Stability is shown in two parts, for eigenvalues of order one and eigenvalues converging to zero, respectively. Eigenvalues of order one are studied by deriving their leading-order asymptotic behavior and reducing the eigenvalue problem to a nonlocal eigenvalue problem (NLEP). A study of the NLEP reveals a condition for the maximal number of stable spots. Eigenvalues converging to zero are investigated using a projection similar to Liapunov-Schmidt reduction and conditions on the positions for stable spots are derived. The Green's function of the Laplacian plays a central role in the analysis. The results are interpreted in the biological, chemical and ecological contexts. They are confirmed by numerical simulations.