Lightweight secure pufs (original) (raw)
Related papers
Techniques for design and implementation of secure reconfigurable PUFs
ACM Transactions on …, 2009
Physically unclonable functions (PUFs) provide a basis for many security and digital rights management protocols. PUF-based security approaches have numerous comparative strengths with respect to traditional cryptography-based techniques, including resilience against physical and side channel attacks and suitability for lightweight protocols. However, classical delay-based PUF structures have a number of drawbacks including susceptibility to guessing, reverse engineering, and emulation attacks, as well as sensitivity to operational and environmental variations.
Physical Unclonable Functions and Applications: A Tutorial
Proceedings of the IEEE, 2014
| This paper describes the use of physical unclonable functions (PUFs) in low-cost authentication and key generation applications. First, it motivates the use of PUFs versus conventional secure nonvolatile memories and defines the two primary PUF types: ''strong PUFs'' and ''weak PUFs.'' It describes strong PUF implementations and their use for lowcost authentication. After this description, the paper covers both attacks and protocols to address errors. Next, the paper covers weak PUF implementations and their use in key generation applications. It covers error-correction schemes such as pattern matching and index-based coding. Finally, this paper reviews several emerging concepts in PUF technologies such as public model PUFs and new PUF implementation technologies.
Reliable Delay Based Algorithm to Boost PUF Security Against Modeling Attacks
Information
Silicon Physical Unclonable Functions (sPUFs) are one of the security primitives and state-of-the-art topics in hardware-oriented security and trust research. This paper presents an efficient and dynamic ring oscillator PUFs (d-ROPUFs) technique to improve sPUFs security against modeling attacks. In addition to enhancing the Entropy of weak ROPUF design, experimental results show that the proposed d-ROPUF technique allows the generation of larger and updated challenge-response pairs (CRP space) compared with simple ROPUF. Additionally, an innovative hardware-oriented security algorithm, namely, the Optimal Time Delay Algorithm (OTDA), is proposed. It is demonstrated that the OTDA algorithm significantly improves PUF reliability under varying operating conditions. Further, it is shown that the OTDA further efficiently enhances the d-ROPUF capability to generate a considerably large set of reliable secret keys to protect the PUF structure from new cyber-attacks, including machine lear...
TV-PUF: A Fast Lightweight Analog Physical Unclonable Function
2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS)
Physical Unclonable Function (PUF) is hardware analog of a one-way function which can address hardware security issues such as device authentication, generating secret keys, producing seeds for Random Number Generators, etc. Traditional silicon PUFs are based on delay (Ring Oscillator PUFs and Arbiter PUFs) or memory structures (like SRAM). In this paper, we propose a novel idea of a very fast, lightweight and robust analog PUF that exploits the susceptibility of Threshold Voltage (V th) of MOSFETs to process variations. We call this the Threshold Voltage PUF (TV-PUF). Extensive implementations and simulations shows improvement in quality metrics like uniformity of the PUF, intra-die distances (reliability metric of the PUF) and inter-die distances (uniqueness metric of the PUF) for 64-bit key generation. For 1 GHz clock input for sense amplifier, our design consumes 0.18µW/bit power with 50 % uniqueness and 51% reliability. It is also shown that TV-PUF characteristics are independent on the technology node.
Design and Implementation of Multiplexed and Obfuscated Physical Unclonable Function
Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 2021
Model building attack on Physical Unclonable Functions (PUFs) by using machine learning (ML) techniques has been a focus in the PUF research area. PUF is a hardware security primitive which can extract unique hardware characteristics (i.e., device-specific) by exploiting the intrinsic manufacturing process variations during integrated circuit (IC) fabrication. The nature of the manufacturing process variations which is random and complex makes a PUF realistically and physically impossible to clone atom-by-atom. Nevertheless, its function is vulnerable to model-building attacks by using ML techniques. Arbiter-PUF is one of the earliest proposed delay-based PUFs which is vulnerable to ML-attack. In the past, several techniques have been proposed to increase its resiliency, but often has to sacrifice the reproducibility of the Arbiter-PUF response. In this paper, we propose a new derivative of Arbiter-PUF which is called Mixed Arbiter-PUF (MA-PUF). Four Arbiter-PUFs are combined and their outputs are multiplexed to generate the final response. We show that MA-PUF has good properties of uniqueness, reliability, and uniformity. Moreover, the resilient of MA-PUF against ML-attack is 15% better than a conventional Arbiter-PUF. The predictability of MA-PUF close to 65% could be achieved when combining with challenge permutation technique.
A Modified RO-PUF with Improved Security Metrics on FPGA
2016 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS), 2016
Physical Unclonable Functions (PUF) are an emerging hardware security primitives proposed by various researchers in last one decade. PUFs are useful security architectures used for identification, authentication and cryptographic key generation. Many PUF topologies are proposed in the past targeting both ASIC and FPGA. It is nearly impossible to get two PUF circuits with same characteristics for the same design. PUFs make use of random process variation occurring during manufacturing of IC which is uncontrollable. The most versatile PUF is ring oscillator (RO) PUF, in which the frequencies of ring oscillators are compared to produce the PUF response. The conventional approach consumes large number of ring oscillators and requires all RO's to be mutually symmetric. In this paper, we have proposed a RO-PUF for FPGA devices, which is capable of generating multiple output bits from each ring oscillator with better security metrics in comparison with PUF designed with similar technique. The PUF is implemented on Xilinx Spartan 3E FPGA boards and the challenge-response pairs (CRP) are verified for statistical properties.
Robust and Flexible FPGA-based Digital PUF
We have developed the first FPGA-based digital physical unclonable function (PUF) by leveraging the reconfig-urability of an FPGA and introducing a new way of using the standard analog delay PUF. The key observation is that for any analog delay PUF, there is a subset of challenge inputs for which the PUF output is stable regardless of operation and environmental conditions. We use only such stable inputs to initialize the look-up tables (LUTs) that are configured in such a way that the digital PUF is formed. We demonstrate the effectiveness of the new security primitive using extensive simulation and experimental results. For example, we show that the new PUF is resistant against a wide spectrum of security attacks and its output stream passes all the NIST randomness tests.
Analysis and Evaluation of PUF-based SoC Designs for Security Applications
IEEE Transactions on Industrial Electronics, 2016
This paper presents a critical analysis and statistical evaluation of two categories of Physically Unclonable Functions (PUFs): ring oscillator PUF and a new proposed adapted latch based PUF. The main contribution is that of measuring the properties of PUF which provide the basic information for using them in security applications. The original method involved the conceptual design of adapted latch based PUFs and ring oscillator PUFs in combination with peripheral devices in order to create an environment for experimental analysis of PUF properties. Implementation, testing and analysis of results followed. This approach has applications on high level security.
Ultra-Lightweight and Reconfigurable Tristate Inverter Based Physical Unclonable Function Design
IEEE Access, 2018
A physical unclonable function (PUF) is a promising security primitive which utilizes the manufacturing process variations to generate a unique unclonable digital fingerprint for a chip. It is especially suitable for resource constrained security applications, e.g. internet of things (IoT) devices. The ring oscillator (RO) PUF and the static RAM (SRAM) PUF are two of the most extensively studied PUF designs. However, previous RO PUF designs require a lot of hardware resources for ROs to be robust and SRAM PUFs are not suitable for authentication. The previous research by the author proposed a tristate static RAM (TSRAM) PUF which is a highly flexible challenge response pair (CRP) based SRAM PUF design. In this paper, a novel configurable PUF structure based on tristate inverters, namely a tristate configurable ring oscillator (TCRO) PUF is proposed. A configurable delay unit, composed of a tristate matrix, is used to replace the inverters in the RO PUF. The configurable bits are able to select a subset of the tristate inverters in the delay unit. Each tristate inverter is completely utilized by using the configurable delay unit and thus the approach enhances the flexibility and entropy of the proposed PUF design. The proposed PUF design can generate an exponential number of CRPs compared with the conventional RO PUF. Moreover, the proposed design significantly reduces the hardware resource consumption of the RO PUF. Delay models of both the TSRAM PUF and the proposed TCRO PUF designs are presented. A comprehensive evaluation of the TSRAM PUF is proceeded. To validate the proposed TSRAM PUF and TCRO PUF designs, a simulation based on UMC 65nm technology and a hardware implementation on a Xilinx Virtex-II FPGA are presented. The experimental results demonstrate good uniqueness and reliability as well as high efficiency in terms of hardware cost.
DTA-PUF: Dynamic Timing-aware Physical Unclonable Function for Resource-constrained Devices
2021
In recent years, physical unclonable functions (PUFs) have gained a lot of attention as mechanisms for hardware-rooted device authentication. While the majority of the previously proposed PUFs derive entropy using dedicated circuitry, software PUFs achieve this from existing circuitry in a system. Such software-derived designs are highly desirable for low-power embedded systems as they require no hardware overhead. However, these software PUFs induce considerable processing overheads that hinder their adoption in resource-constrained devices. In this article, we propose DTA-PUF, a novel, software PUF design that exploits the instruction- and data-dependent dynamic timing behaviour of pipelined cores to provide a reliable challenge-response mechanism without requiring any extra hardware. DTA-PUF accepts sequences of instructions as an input challenge and produces an output response based on the manifested timing errors under specific over-clocked settings. To lower the required proce...