Linkage Map and the Sex-linked Orange Locus Mapping of Orange, Multiple Origins, and Epistasis over Non-Agouti (original) (raw)

A Domestic cat X Chromosome Linkage Map and the Sex-Linked orange Locus: Mapping of orange, Multiple Origins and Epistasis Over nonagouti

Genetics, 2009

A comprehensive genetic linkage map of the domestic cat X chromosome was generated with the goal of localizing the genomic position of the classic X-linked orange (O) locus. Microsatellite markers with an average spacing of 3 Mb were selected from sequence traces of the cat 1.93 whole genome sequence (WGS), including the pseudoautosomal region 1 (PAR1). Extreme variation in recombination rates (centimorgans per megabase) was observed along the X chromosome, ranging from a virtual absence of recombination events in a region estimated to be .30 Mb to recombination frequencies of 15.7 cM/Mb in a segment estimated to be ,0.3 Mb. This detailed linkage map was applied to position the X-linked orange gene, placing this locus on the q arm of the X chromosome, as opposed to a previously reported location on the p arm. Fine mapping placed the locus between markers at positions 106 and 116.8 Mb in the current 1.93-coverage sequence assembly of the cat genome. Haplotype analysis revealed potential recombination events that could reduce the size of the candidate region to 3.5 Mb and suggested multiple origins for the orange phenotype in the domestic cat. Furthermore, epistasis of orange over nonagouti was demonstrated at the genetic level.

Localizing the X-linked orange colour phenotype using feline resource families

Animal Genetics, 2005

Many genes influencing mammalian coat colours are well conserved. While genes responsible for pelage phenotypes in one species provide strong evidence for a candidate gene in a different species, the X-linked orange phenotype of the domestic cat is unique within mammals. The orange locus (O) undergoes X-inactivation, producing females that express both wildtype black (wt) and orange (variant) phenotypes when heterozygous (tortoiseshell). The orange locus has not yet been localized on the X chromosome. Tortoiseshell male cats have been identified but have been shown to be sex chromosome trisomies (XXY). To localize the cat orange locus, 10 feline-derived X-linked microsatellites were analysed in two extended cat pedigrees consisting of 79 and 55 individuals, respectively, segregating for the orange phenotype. Linkage analyses excluded close association of orange in the vicinity of the nine informative X-linked microsatellites. One marker was not polymorphic within either family. Several markers suggested exclusion (Z < )2.0) at distances of 7.5-33 cM. Exclusion analyses suggested a possible location for orange a 14 cM region near Xcen. Recombination distances of markers in the segregating feline pedigrees were reduced as compared with the feline interspecies backcross family. Thus, the presented pedigrees may be useful as reference families for the domestic cat because more accurate recombination rates for domestic cats can be determined.

A Genetic Linkage Map of Microsatellites in the Domestic Cat (Felis catus)

Genomics, 1999

Of the nonprimate mammalian species with developing comparative gene maps, the feline gene map (Felis catus, Order Carnivora, 2N ‫؍‬ 38) displays the highest level of syntenic conservation with humans, with as few as 10 translocation exchanges discriminating the human and feline genome organization. To extend this model, a genetic linkage map of microsatellite loci in the feline genome has been constructed including 246 autosomal and 7 X-linked loci. Two hundred thirty-five dinucleotide (dC ⅐ dA) n ⅐ (dG ⅐ dT) n and 18 tetranucleotide repeat loci were identified and genotyped in a two-family, 108-member multigeneration interspecies backcross pedigree between the domestic cat (F. catus) and the Asian leopard cat (Prionailurus bengalensis). Two hundred twenty-nine loci were linked to at least one other marker with a lod score >3.0, identifying 34 linkage groups. Representative markers from each linkage group were assigned to specific cat chromosomes by somatic cell hybrid analysis, resulting in chromosomal assignments to 16 of the 19 feline chromosomes. Genome coverage spans approximately 2900 cM, and we estimate a genetic length for the sex-averaged map as 3300 cM. The map has an average intragroup intermarker spacing of 11 cM and provides a valuable resource for mapping phenotypic variation in the species and relating it to gene maps of other mammals, including human.

Simultaneous maxi mum likelihood estimation of the frequency of sex linked orange and the male ratio in the cat

Carnivore Genet. Newsl, 1984

With the advent of new molecular marker technologies, it is now feasible to initiate genome projects for outcrossing plant species, which have not received much attention in genetic research, despite their great agricultural and environmental value. Because outcrossing species typically have heterogeneous genomes, data structure for molecular markers representing an entire genome is complex: some markers may have more alleles than others, some markers are codominant whereas others are dominant, and some markers are heterozygous in one parent but fixed in the other parent whereas the opposite can be true for other markers. A major difficulty in analyzing these different types of marker at the same time arises from uncertainty about parental linkage phases over markers. In this paper, we present a general maximumlikelihood-based algorithm for simultaneously estimating linkage and linkage phases for a mixed set of different marker types containing fully informative markers (segregating 1:1:1:1) and partially informative markers (or missing markers, segregating 1:2:1, 3:1, and 1:1) in a full-sib family derived from two outbred parent plants. The characterization of linkage phases is based on the posterior probability distribution of the assignment of alternative alleles at given markers to two homologous chromosomes of each parent, conditional on the observed phenotypes of the markers. Two-and multi-point analyses are performed to estimate the recombination fraction and determine the most likely linkage phase between different types of markers. A numerical example is presented to demonstrate the statistical properties of the model for characterizing the linkage phase between markers.

An autosomal genetic linkage map of the domestic cat, Felis silvestris catus

Genomics, 2009

We report on the completion of an autosomal genetic linkage (GL) map of the domestic cat (Felis silvestris catus). Unlike two previous linkage maps of the cat constructed with a hybrid pedigree between the domestic cat and the Asian leopard cat, this map was generated entirely with domestic cats, using a large multi-generational pedigree (n=256) maintained by the Nestlé Purina PetCare Company. Four hundred eighty-three simple tandem repeat (STR) loci have been assigned to linkage groups on the cat's 18 autosomes. A single linkage group spans each autosome. The length of the cat map, estimated at 4370 cM, is long relative to most reported mammalian maps. A high degree of concordance in marker order was observed between the third-generation map and the 1.5 Mbresolution radiation hybrid (RH) map of the cat. Using the cat 1.9X whole-genome sequence, we identified map coordinates for 85#x00025; of the loci in the cat assembly, with high concordance observed in marker order between the linkage map and the cat sequence assembly. The present version represents a marked improvement over previous cat linkage maps as it (i) nearly doubles the number of markers that were present in the second-generation linkage map in the cat, (ii) provides a linkage map generated in a domestic cat pedigree which will more accurately reflect recombination distances than previous maps generated in a hybrid pedigree, and (iii) provides single linkage groups spanning each autosome. Marker order was largely consistent between this and the previous maps, though the use of a hybrid pedigree in the earlier versions appears to have contributed to some suppression of recombination. The improved linkage map will provide an added resource for the mapping of phenotypic variation in the domestic cat and the use of this species as a model system for biological research.

Second-Generation Integrated Genetic Linkage/Radiation Hybrid Maps of the Domestic Cat (Felis catus)

Journal of Heredity, 2003

We report construction of second-generation integrated genetic linkage and radiation hybrid (RH) maps in the domestic cat (Felis catus) that exhibit a high level of marker concordance and provide near-full genome coverage. A total of 864 markers, including 585 coding loci (type I markers) and 279 polymorphic microsatellite loci (type II markers), are now mapped in the cat genome. We generated the genetic linkage map utilizing a multigeneration interspecies backcross pedigree between the domestic cat and the Asian leopard cat (Prionailurus bengalensis). Eighty-one type I markers were integrated with 247 type II markers from a first-generation map to generate a map of 328 loci (320 autosomal and 8 X-linked) distributed in 47 linkage groups, with an average intermarker spacing of 8 cM. Genome coverage spans approximately 2,650 cM, allowing an estimate for the genetic length of the sex-averaged map as 3,300 cM. The 834-locus second-generation domestic cat RH map was generated from the incorporation of 579 type I and 255 type II loci. Type I markers were added using targeted selection to cover either genomic regions underrepresented in the first-generation map or to refine breakpoints in human/feline synteny. The integrated linkage and RH maps reveal approximately 110 conserved segments ordered between the human and feline genomes, and provide extensive anchored reference marker homologues that connect to the more gene dense human and mouse sequence maps, suitable for positional cloning applications.

A glance at recombination hotspots in the domestic cat

2015

Recombination has essential roles in increasing genetic variability within a population and in ensuring successful meiotic events. The objective of this study is to (i) infer the population scaled recombination rate (ρ), and (ii) identify and characterize localities of increased recombination rate for the domestic cat, Felis silvestris catus. SNPs (n = 701) were genotyped in twenty-two cats of Eastern random bred origin. The SNPs covered ten different chromosomal regions (A1, A2, B3, C2, D1, D2, D4, E2, F2, X) with an average region size of 850 Kb and an average SNP density of 70 SNPs/region. The Bayesian method in the program inferRho was used to infer regional population recombination rates and hotspots localities. The regions exhibited variable population recombination rates and four decisive recombination hotspots were identified on cat chromosome A2, D1, and E2 regions. No correlation was detected between the GC content and the locality of recombination spots. The hotspots encl...

Bayesian analyses of admixture in wild and domestic cats (Felis silvestris) using linked microsatellite loci

Molecular Ecology, 2005

Methods recently developed to infer population structure and admixture mostly use individual genotypes described by unlinked neutral markers. However, Hardy-Weinberg and linkage disequilibria among independent markers decline rapidly with admixture time, and the admixture signals could be lost in a few generations. In this study, we aimed to describe genetic admixture in 182 European wild and domestic cats ( Felis silvestris ), which hybridize sporadically in Italy and extensively in Hungary. Cats were genotyped at 27 microsatellites, including 21 linked loci mapping on five distinct feline linkage groups. Genotypes were analysed with STRUCTURE 2.1, a Bayesian procedure designed to model admixture linkage disequilibrium, which promises to assess efficiently older admixture events using tightly linked markers. Results showed that domestic and wild cats sampled in Italy were split into two distinct clusters with average proportions of membership Q > 0.90, congruent with prior morphological identifications. In contrast, free-living cats sampled in Hungary were assigned partly to the domestic and the wild cat clusters, with Q < 0.50. Admixture analyses of individual genotypes identified, respectively, 5/61 (8%), and 16 -20/65 (25 -31%) hybrids among the Italian wildcats and Hungarian free-living cats. Similar results were obtained in the past using unlinked loci, although the new linked markers identified additional admixed wildcats in Italy. Linkage analyses confirm that hybridization is limited in Italian, but widespread in Hungarian wildcats, a population that is threatened by cross-breeding with free-ranging domestic cats. The total panel of 27 loci performed better than the linked loci alone in the identification of domestic and known hybrid cats, suggesting that a large number of linked plus unlinked markers can improve the results of admixture analyses. Inferred recombination events led to identify the population of origin of chromosomal segments, suggesting that admixture mapping experiments can be designed also in wild populations.

A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

G3 (Bethesda, Md.), 2016

High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies. Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier domestic cat genome assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from previous genome assemblies. Here we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6,63...

Pelage mutant allele frequencies in domestic cat populations of Poland

Journal of Heredity, 1987

ABSTRACT. TO determine mutant allele frequencies, surveys of coat phenotypes of the domestic cat [Fells catus L.) were conducted from October 1982 to June 1985 in 23 urban and rural populations of Poland (A/ = 67-278). The seven gene loci studied Included: sex-linked orange (O), ...