Long-latency TMS-evoked potentials during motor execution and inhibition (original) (raw)
Related papers
Journal of neurophysiology, 2016
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) enables non-invasive neurophysiological investigation of the human cortex. A TMS paradigm of short-latency afferent inhibition (SAI) is characterised by attenuation of the motor evoked potential (MEP) and modulation of N100 of the TMS-evoked potential (TEP) when TMS is delivered to motor cortex (M1) following median nerve stimulation. SAI is a marker of cholinergic activity in the motor cortex, however, the SAI has not been tested from the prefrontal cortex. We aimed to explore the effect of SAI in dorsolateral prefrontal cortex (DLPFC). SAI was examined in 12 healthy subjects with median nerve stimulation and TMS delivered to M1 and DLPFC at inter-stimulus intervals (ISI) relative to the individual N20 latency. SAI in M1 was tested at the optimal ISI of N20+2ms. SAI in DLPFC was investigated at a range of ISI from N20+2 to N20+20ms to explore its temporal profile. For SAI in M1, the attenuation of MEP a...
2013
Motor preparation for execution of both simple and choice reaction time tasks (SRT and CRT) involves enhancement of corticospinal excitability (CE). However, motor preparation also implies changes in inhibitory control that have thus far been much less studied. Short-interval intracortical inhibition (SICI) has been shown to decrease before CE increases. Therefore we reasoned that, if SICI contributes to inhibitory control of voluntary movement during the preparatory phase, it would be larger in CRT than in SRT because of the need to keep the movement unreleased until the uncertainty resolves on which task is required. We measured changes in SICI and in CE at different time points preceding motor reaction in normal subjects. Single-pulse transcranial magnetic stimulation (spTMS) and paired-pulse transcranial magnetic stimulation (ppTMS) produced time-dependent changes in both SRT and CRT, with shortening when applied close to the presentation of the imperative signal ("early") and lengthening when applied near the expected reaction ("late"). In addition, at all stimulation time points, reaction time was shorter with ppTMS than that with spTMS, but there was no consistent association between the amount of SICI and reaction time changes. At early stimulation time points, CE was reduced in CRT but not in SRT. However, SICI in CRT was not different from SICI in SRT. At late stimulation time points, SICI decreased just before enhancement of CE. Our findings indicate that inhibitory circuits other than SICI are responsible for setting the level of CE at earlier parts of the reaction time period. Although the decrease in SICI may contribute to the increase in CE at the last part of the premotor period, the two phenomena are not dependent on each other.
Experimental Brain Research, 1999
The effects of subthreshold transcranial magnetic stimulation (TMS) on simple and go/no-go reaction time (RT) tasks were studied in seven healthy volunteers. Subjects were asked to respond by abducting the thumb in a warning-imperative signal paradigm. TMS was randomly delivered at variable delays to the imperative signal (IS). Simple RT was significantly shortened when TMS was delivered to the left motor cortex and parietal regions simultaneously with IS. In the go/no-go paradigm, a similar trend to shorter RT was seen at a delay of 0 ms. Additionally, a significant shortening was observed at a delay of 90 ms with TMS over the contralateral motor cortex only. Movement-related potentials (MRPs) in the two paradigms showed a predominantly contralateral negativity approximately 80 ms preceding EMG onset. Our findings support the existence of two differentiated effects of TMS on RT: (1) one non-specific effect, evidenced in both the simple and go/no-go paradigms at a 0 ms delay, which can be at least partially explained by intersensory facilitation; and (2) a motor-specific effect of TMS, unveiled in the go/no-go paradigm at a 90 ms delay.
Cortical activation during temporal preparation assessed by transcranial magnetic stimulation
Biological Psychology, 2010
Preparatory modulations relative to the timing of upcoming stimuli may involve activation or suppression mechanisms. Here, we assessed the interplay between these mechanisms with transcranial magnetic stimulation (TMS) of the motor cortex. Single-or paired-pulse TMS with 3-or 15-ms interstimulus intervals was delivered during the interval between the warning and the imperative stimuli (i.e., the foreperiod) of a choice reaction time task. Temporal uncertainty was manipulated through betweenblock variation of the foreperiod duration (500 or 2500 ms). The shortening of reaction time for the short foreperiod was accompanied with a decrease in amplitude of the single-pulse motor evoked potential (MEP), indicating corticospinal suppression. The co-occurring increase in amplitude of both paired-pulse MEPs (3 and 15 ms) expressed relative to single-pulse MEPs reveals released short intracortical inhibition (SICI) and enhanced intracortical facilitation (ICF). These results suggest that temporal preparation is associated with both corticospinal suppression and cortical activation.
2007
Single-pulse transcranial magnetic stimulations (TMSs) of the motor cortex (M1) were performed in order to decipher the neural mechanisms of time preparation. We varied the degree to which it was possible to prepare for the response signal in a choice reaction time (RT) task by employing either a short (500 ms) or a long (2500 ms) foreperiod in separate blocks of trials. Transcranial magnetic stimulations were delivered during these foreperiods in order to study modulations in both the size of the motor evoked potential (MEP) and the duration of the silent period (SP) in tonically activated response agonists. Motor evoked potential area and silent period duration were assumed to reflect, respectively, the excitability of the cortico-spinal pathway and the recruitment of inhibitory cortical interneurons. Shorter reaction times were observed with the shorter foreperiod, indicating that a better level of preparation was attained for the short foreperiod. Silent period duration decreased as time elapsed during the foreperiod and this decrement was more pronounced for the short foreperiod. This result suggests that time preparation is accompanied by a removal of intracortical inhibition, resulting in an activation. Motor evoked potential area decreased over the course of the short foreperiod, but not over the long foreperiod, revealing that time preparation involves the inhibition of the cortico-spinal pathway. We propose that cortico-spinal inhibition secures the development of cortical activation, preventing erroneous premature responding.
Mechanisms and Dynamics of Cortical Motor Inhibition in the Stop-signal Paradigm: A TMS Study
Journal of Cognitive Neuroscience, 2010
The ability to stop ongoing motor responses in a split-second is a vital element of human cognitive control and flexibility that relies in large part on prefrontal cortex. We used the stop-signal paradigm to elucidate the engagement of primary motor cortex (M1) in inhibiting an ongoing voluntary motor response. The stop-signal paradigm taps the ability to flexibly countermand ongoing voluntary behavior upon presentation of a stop signal. We applied single-pulse TMS to M1 at several intervals following the stop signal to track the time course of excitability of the motor system related to generating and stopping a manual response. Electromyography recorded from the flexor pollicis brevis allowed quantification of the excitability of the corticospinal tract and the involvement of intracortical GABABergic circuits within M1, indexed respectively by the amplitude of the motor-evoked potential and the duration of the late part of the cortical silent period (SP). The results extend our kn...
Frontiers in Neuroscience
Transcranial magnetic stimulation-electroencephalogram (TMS-EEG) co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs). Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5) and 8 (N8) ms after the TMS pulse have been recently described, but because of their large amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI): low frequency stimulation of premotor area (PMC). TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold (rMT) was measured before and after applying 900 TMS conditioning stimuli to left PMC with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor-evoked potentials (MEPs). Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant; this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early latency components can be used to evaluate the reactivity of the stimulated cortex.
2018
International audienceThere has been a growing interest in the role of pre-stimulus oscillations on cortical excitability in visual and motor systems. Prior studies focused on the relationship between pre-stimulus neuronal activity and TMS-evoked motor evoked potentials (MEPs) have reported heterogeneous results. We aimed to assess the role of pre-stimulus neural activity on the latency of MEPs, which might enhance our understanding of the variability of MEP signals, and potentially provide information on the role played by cortical activity fluctuations in the excitability of corticospinal pathways. Near-threshold single-pulse TMS (spTMS) was applied at random intervals over the primary motor cortex of 14 healthy participants while they sat pas- sively, to trigger hand muscle contractions. Multichannel EEG was recorded during spTMS blocks. Spearman correlations between both the variation in MEP onset latencies and peak-to-peak MEP amplitudes, and the pre-stimulus power of EEG oscil...
A TMS study on non-consciously triggered response tendencies in the motor cortex
Experimental Brain Research, 2006
Non-consciously perceived arrow stimuli can speed up responses to similar stimuli that are shortly presented after a masked prime. Yet response facilitation may turn into a delay at particular intervals between masked primes and targets. In this case, the lateralized readiness potential, as a measure of the time course of differential activation between the primed and the unprimed motor cortices, consistently yielded two consecutive maxima of opposite polarity, at 250 and at 350 ms after prime onset. To further explore the mechanisms underlying inverse priming, we used single-pulse transcranial magnetic stimulation (TMS) of the left or right primary motor hand area (M1). Lateralized changes in corticomotor excitability induced by the masked prime were probed by assessing the effect of priming on the amplitude of the TMS-induced motor-evoked potentials (MEPs). In two experiments, MEPs increased and decreased, respectively, in the hand primed by the masked arrows when TMS was given at 250 and at 350 ms after prime onset, confirming the expectation that MEP changes may indicate the response tendencies induced by the masked primes. Both effects were more distinct with TMS of the left M1. However, there were also some differences between the patterns of results in the two experiments. We propose that the left M1 is activated for preparation of both right- and left-hand movements, and we relate the present results to current hypotheses about the nature of inverse priming.