A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex (original) (raw)
Related papers
Long-latency TMS-evoked potentials during motor execution and inhibition
2013
Transcranial magnetic stimulation (TMS) has often been used in conjunction with electroencephalography (EEG), which is effective for the direct demonstration of cortical reactivity and corticocortical connectivity during cognitive tasks through the spatio-temporal pattern of long-latency TMS-evoked potentials (TEPs). However, it remains unclear what pattern is associated with the inhibition of a planned motor response. Therefore, we performed TMS-EEG recording during a go/stop task, in which participants were instructed to click a computer mouse with a right index finger when an indicator that was moving with a constant velocity reached a target (go trial) or to avoid the click when the indicator randomly stopped just before it reached the target (stop trial). Single-pulse TMS to the left (contralateral) or right (ipsilateral) motor cortex was applied 500 ms before or just at the target time. TEPs related to motor execution and inhibition were obtained by subtractions between averaged EEG waveforms with and without TMS. As a result, in TEPs induced by both contralateral and ipsilateral TMS, small oscillations were followed by a prominent negative deflection around theTMS site peaking at approximately 100 ms post-TMS (N100), and a less pronounced later positive component (LPC) over the broad areas that was centered at the midline-central site in both go and stop trials. However, compared to the pattern in go and stop trials with TMS at 500 ms before the target time, N100 and LPC were differently modulated in the go and stop trials with TMS just at the target time. The amplitudes of both N100 and LPC decreased in go trials, while the amplitude of LPC decreased and the latency of LPC was delayed in both go and stop trials. These results suggested thatTMS-induced neuronal reactions in the motor cortex and subsequent their propagation to surrounding cortical areas might change functionally according to task demand when executing and inhibiting a motor response.
The Journal of Physiology, 2009
Transcranial magnetic stimulation (TMS) allows the testing of various inhibitory processes in human motor cortex. Here we aimed at gaining more insight into the underlying physiology by studying the interactions between short-interval intracortical inhibition (SICI) and short-latency afferent inhibition (SAI). SICI and SAI were examined in a slightly contracting hand muscle of healthy subjects by measuring inhibition of a test motor-evoked potential conditioned by a sub-threshold motor cortical magnetic pulse (S1) or an electrical pulse (P) applied to the ulnar nerve at the wrist, respectively. SICI alone and SAI alone had similar magnitude when S1 intensity was set to 90% active motor threshold and P intensity to three times the perceptual sensory threshold. SICI was reduced or even disinhibited when P was co-applied, and SAI was reduced or disinhibited when S1 was co-applied. These interactions did not depend on the exact timing of arrival of P and S1 in motor cortex. A control experiment with a S1 intensity lowered to 70% active motor threshold excluded a contribution by short-interval intracortical facilitation. Finally, SICI with co-applied P correlated linearly with SICI alone with a slope of the regression line close to 1 whereas SAI did not correlate with SAI when S1 was co-applied with a slope of the regression line close to zero. Data indicate that S1 largely eliminates the effects of P when applied together, suggesting dominance of S1 over P. Findings strongly support the idea that SICI and SAI are mediated through two distinct and reciprocally connected subtypes of GABAergic inhibitory interneurons with convergent projections onto the corticospinal neurons. Furthermore, dominance of S1 over P is compatible with the notion that the SICI interneurons target the corticospinal neurons closer to their axon initial segment than the SAI interneurons.
Interactions between short latency afferent inhibition and long interval intracortical inhibition
Experimental Brain Research, 2009
Peripheral nerve stimulation inhibits the motor cortex and the process has been termed aVerent inhibition. Short latency aVerent inhibition (SAI) at interstimulus intervals (ISI) of »20 ms likely involves central cholinergic transmission and was found to be altered in Alzheimer's disease and Parkinson's disease. Cholinergic and GABA A receptors are involved in mediating SAI. The eVects of SAI on other intracortical inhibitory and facilitatory circuits have not been examined. The objective of the present study is to test how SAI interacts with long interval cortical inhibition (LICI), a cortical inhibitory circuit likely mediated by GABA B receptors. We studied 10 healthy volunteers. Surface electromyogram was recorded from the Wrst dorsal interosseous muscle. SAI was elicited by median nerve stimulation at the wrist followed by transcranial magnetic stimulation (TMS) at ISI of N20 somatosensory evoked potential latency + 3 ms. The eVects of diVerent test motorevoked potential (MEP) amplitudes (0.2, 1, and 2 mV) were examined for LICI and SAI. Using paired and triplepulse paradigms, the interactions between SAI and LICI were investigated. Both LICI and SAI decreased with increasing test MEP amplitude. AVerent stimulation that produced SAI decreased LICI. Thus, the present Wndings suggest that LICI and SAI have inhibitory interactions.
Cerebral cortex (New York, N.Y. : 1991), 2016
The human motor cortex has a tendency to resonant activity at about 20 Hz so stimulation should more readily entrain neuronal populations at this frequency. We investigated whether and how different interneuronal circuits contribute to such resonance by using transcranial magnetic stimulation (TMS) during transcranial alternating current stimulation (tACS) at motor (20 Hz) and a nonmotor resonance frequency (7 Hz). We tested different TMS interneuronal protocols and triggered TMS pulses at different tACS phases. The effect of cholinergic short-latency afferent inhibition (SAI) was abolished by 20 Hz tACS, linking cortical beta activity to sensorimotor integration. However, this effect occurred regardless of the tACS phase. In contrast, 20 Hz tACS selectively modulated MEP size according to the phase of tACS during single pulse, GABAAergic short-interval intracortical inhibition (SICI) and glutamatergic intracortical facilitation (ICF). For SICI this phase effect was more marked duri...
Frontiers in Neuroscience
Transcranial magnetic stimulation-electroencephalogram (TMS-EEG) co-registration offers the opportunity to test reactivity of brain areas across distinct conditions through TMS-evoked potentials (TEPs). Several TEPs have been described, their functional meaning being largely unknown. In particular, short-latency potentials peaking at 5 (P5) and 8 (N8) ms after the TMS pulse have been recently described, but because of their large amplitude, the problem of whether their origin is cortical or not has been opened. To gain information about these components, we employed a protocol that modulates primary motor cortex excitability (MI): low frequency stimulation of premotor area (PMC). TMS was applied simultaneously with EEG recording from 70 electrodes. Amplitude of TEPs evoked by 200 single-pulses TMS delivered over MI at 110% of resting motor threshold (rMT) was measured before and after applying 900 TMS conditioning stimuli to left PMC with 1 Hz repetition rate. Single subject analyses showed reduction in TEPs amplitude after PMC conditioning in a sample of participants and increase in TEPs amplitude in two subjects. No effects were found on corticospinal excitability as recorded by motor-evoked potentials (MEPs). Furthermore, correlation analysis showed an inverse relation between the effects of the conditioning protocol on P5-N8 complex amplitude and MEPs amplitude. Because the effects of the used protocol have been ascribed to a cortical interaction between premotor area and MI, we suggest that despite the sign of P5-N8 amplitude modulation is not consistent across participant; this modulation could indicate, at least in part, their cortical origin. We conclude that with an accurate experimental procedure early latency components can be used to evaluate the reactivity of the stimulated cortex.
Frontiers in Neuroscience, 2021
IntroductionTranscranial magnetic stimulation (TMS)–evoked potentials (TEPs) allow for probing cortical functions in health and pathology. However, there is uncertainty whether long-latency TMS-evoked potentials reflect functioning of the targeted cortical area. It has been suggested that components such as the TMS-evoked N100 are stereotypical and related to nonspecific sensory processes rather than transcranial effects of the changing magnetic field. In contrast, TEPs that vary according to the targeted brain region and are systematically lateralized toward the stimulated hemisphere can be considered to reflect activity in the stimulated brain region resulting from transcranial electromagnetic induction.MethodsTMS with concurrent 64-channel electroencephalography (EEG) was sequentially performed in homologous areas of both hemispheres. One sample of healthy adults received TMS to the dorsolateral prefrontal cortex; another sample received TMS to the temporo-occipital cortex. We an...
Long-Interval Cortical Inhibition from the Dorsolateral Prefrontal Cortex: a TMS–EEG Study
Neuropsychopharmacology, 2008
Several studies have demonstrated that cortical inhibition (CI) can be recorded by paired transcranial magnetic stimulation (TMS) of the motor cortex and recorded by surface electromyography (EMG). However, recording CI from other cortical regions that are more closely associated with the pathophysiology of some neurological and psychiatric disorders (eg, dorsolateral prefrontal cortex (DLPFC) in schizophrenia) was previously unattainable. This study, therefore, was designed to investigate whether CI could be measured directly from the motor cortex and DLPFC by combining TMS with electroencephalography (EEG). Long-interval CI (LICI) is a TMS paradigm that was used to index CI in the motor cortex and DLPFC in healthy subjects. In the motor cortex, LICI resulted in significant suppression (32.8 ± 30.5%) of mean cortical evoked activity on EEG, which was strongly correlated with LICI recorded by EMG. In the DLPFC, LICI resulted in significant suppression (30.1±26.9%) of mean cortical evoked activity and also correlated with LICI in the motor cortex. These data suggest that CI can be recorded by combining TMS with EEG and may facilitate future research attempting to ascertain the role of CI in the pathophysiology of several neurological and psychiatric disorders.
NeuroImage, 2014
The neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) have been mostly investigated by peripheral motor-evoked potentials (MEPs). New TMS-compatible EEG systems allow a direct investigation of the stimulation effects through the analysis of TMS-evoked potentials (TEPs). We investigated the effects of 1-Hz rTMS over the primary motor cortex (M1) of 15 healthy volunteers on TEP evoked by single pulse TMS over the same area. A second experiment in which rTMS was delivered over the primary visual cortex (V1) of 15 healthy volunteers was conducted to examine the spatial specificity of the effects. Single-pulse TMS evoked four main components: P30, N45, P60 and N100. M1-rTMS resulted in a significant decrease of MEP amplitude and in a significant increase of P60 and N100 amplitude. There was no effect after V1-rTMS. 1-Hz rTMS appears to increase the amount of inhibition following a TMS pulse, as demonstrated by the higher N100 and P60, which are thought to originate from GABAb-mediated inhibitory post-synaptic potentials. Our results confirm the reliability of the TMS-evoked N100 as a marker of cortical inhibition and provide insight into the neuromodulatory effects of 1-Hz rTMS. The present finding could be of relevance for therapeutic and diagnostic purposes.