Characterization of the first double-sided 3D radiation sensors fabricated at FBK on 6-inch silicon wafers (original) (raw)

Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades.

First production of new thin 3D sensors for HL-LHC at FBK

Owing to their intrinsic (geometry dependent) radiation hardness, 3D pixel sensors are promising candidates for the innermost tracking layers of the forthcoming experiment upgrades at the “Phase 2” High-Luminosity LHC (HL-LHC). To this purpose, extreme radiation hardness up to the expected maximum fluence of 2×10^16 neq.cm^-2 must come along with several technological improvements in a new generation of 3D pixels, i.e., increased pixel granularity (50×50 or 25×100 µm^2 cell size), thinner active region (~100 µm), narrower columnar electrodes (~5µm diameter) with reduced inter-electrode spacing (~30 µm), and very slim edges (~100 µm). The fabrication of the first batch of these new 3D sensors was recently completed at FBK on Si-Si direct wafer bonded 6” substrates. Initial electrical test results, performed at wafer level on sensors and test structures, highlighted very promising performance, in good agreement with TCAD simulations: low leakage current (<1 pA/column), intrinsic breakdown voltage of more than 150 V, capacitance of about 50 fF/column, thus assessing the validity of the design approach. A large variety of pixel sensors compatible with both existing (e.g., ATLAS FEI4 and CMS PSI46) and future (e.g., RD53) read-out chips were fabricated, that were also electrically tested on wafer using a temporary metal layer patterned as strips shorting rows of pixels together. This allowed a statistically significant distribution of the relevant electrical quantities to be obtained, thus gaining insight into the impact of process-induced defects. A few 3D strip test structures were irradiated with X-rays, showing inter-strip resistance of at least several GΩ even after 50 Mrad(Si) dose, thus proving the p-spray robustness. We present the most important design and technological aspects, and results obtained from the initial investigations.

Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.