Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders (original) (raw)
Related papers
Tau mis-splicing correlates with motor impairments and striatal dysfunction in a model of tauopathy
Brain, 2021
Tauopathies are neurodegenerative diseases caused by the abnormal metabolism of the microtubule associated protein tau (MAPT), which is highly expressed in neurons and critically involved in microtubule dynamics. In the adult human brain, the alternative splicing of exon 10 in MAPT pre-mRNA produces equal amounts of protein isoforms with either three (3R) or four (4R) microtubule binding domains. Imbalance in the 3R:4R tau ratio is associated with primary tauopathies that develop atypical parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration. Yet, the development of effective therapies for those pathologies is an unmet goal. Here we report motor coordination impairments in the htau mouse model of tauopathy which harbour abnormal 3R:4R tau isoforms content, and in contrast to TauKO mice, are unresponsive to l-DOPA. Preclinical-PET imaging, array tomography and electrophysiological analyses indicated the dorsal striatum as the candidate structure mediating...
Tauopathies are neurodegenerative diseases that affect millions of people worldwide including those with Alzheimer's disease. While many efforts have focused on understanding the role of tau protein in neurodegeneration, there has been little done to systematically analyze and study the structures within tau's encoding RNA and their connection to disease pathology. Knowledge of RNA structure can provide insights into disease mechanisms and how to affect protein production for therapeutic benefit. Using computational methods based on thermodynamic stability and evolutionary conservation, we identified structures throughout the tau pre-mRNA, especially at exon-intron junctions and within the 5' and 3' untranslated regions (UTRs). In particular, structures were identified at twenty exon-intron junctions. The 5' UTR contains one structured region, which lies within a known internal ribosome entry site. The 3' UTR contains eight structured regions, including one t...
Regulation of Alternative Splicing of Human Tau Exon 10 by Phosphorylation of Splicing Factors
Molecular and Cellular Neuroscience, 2001
Tau is a microtubule-associated protein whose transcript undergoes regulated splicing in the mammalian nervous system. Exon 10 of the gene is an alternatively spliced cassette that is adult-specific and encodes a microtubule-binding domain. Mutations increasing the inclusion of exon 10 result in the production of tau protein which predominantly contains four microtubule-binding repeats and were shown to cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Here we show that exon 10 usage is regulated by CDC2-like kinases CLK1, 2, 3, and 4 that phosphorylate serine-arginine-rich proteins, which in turn regulate pre-mRNA splicing. Cotransfection experiments suggest that CLKs achieve this effect by releasing specific proteins from nuclear storage sites. Our results show that changing pre-mRNA-processing pathways through phosphorylation could be a new therapeutic concept for tauopathies. 3 Abbreviations used: FTDP-17, frontotemporal dementia and parkinsonism linked to chromosome 17; DARPP-32, dopamine and cyclic AMP-regulated phosphoprotein, relative molecular mass 32,000; SR protein, serine-arginine-rich protein.
Cell reports, 2018
The microtubule-associated protein tau regulates myriad neuronal functions, such as microtubule dynamics, axonal transport and neurite outgrowth. Tauopathies are neurodegenerative disorders characterized by the abnormal metabolism of tau, which accumulates as insoluble neuronal deposits. The adult human brain contains equal amounts of tau isoforms with three (3R) or four (4R) repeats of microtubule-binding domains, derived from the alternative splicing of exon 10 (E10) in the tau transcript. Several tauopathies are associated with imbalances of tau isoforms, due to splicing deficits. Here, we used a trans-splicing strategy to shift the inclusion of E10 in a mouse model of tauopathy that produces abnormal excess of 3R tau. Modulating the 3R/4R ratio in the prefrontal cortex led to a significant reduction of pathological tau accumulation concomitant with improvement of neuronal firing and reduction of cognitive impairments. Our results suggest promising potential for the use of RNA re...
Molecular Biology of the Cell, 2004
The neural microtubule-associated protein tau binds to and stabilizes microtubules. Because of alternative mRNA splicing, tau is expressed with either 3 or 4 C-terminal repeats. Two observations indicate that differences between these tau isoforms are functionally important. First, the pattern of tau isoform expression is tightly regulated during development. Second, mutation-induced changes in tau RNA splicing cause neuronal cell death and dementia simply by altering the isoform expression ratio. To investigate whether 3- and 4-repeat tau differentially regulate microtubule behavior in cells, we microinjected physiological levels of these two isoforms into EGFP-tubulin–expressing cultured MCF7 cells and measured the effects on the dynamic instability behavior of individual microtubules by time-lapse microscopy. Both isoforms suppressed microtubule dynamics, though to different extents. Specifically, 4-repeat tau reduced the rate and extent of both growing and shortening events. In ...
A genomic sequence analysis of the mouse and human microtubule-associated protein tau
Mammalian Genome, 2001
Microtubule associated protein tau (MAPT) encodes the microtubule associated protein tau, the primary component of neurofibrillary tangles found in Alzheimer's disease and other neurodegenerative disorders. Mutations in the coding and intronic sequences of MAPT cause autosomal dominant frontotemporal dementia (FTDP-17). MAPT is also a candidate gene for progressive supranuclear palsy and hereditary dysphagic dementia. A human PAC (201 kb) and a mouse BAC (161 kb) containing the entire MAPT and Mtapt genes, respectively, were identified and sequenced. Comparative DNA sequence analysis revealed over 100 conserved non-repeat potential cis-acting regulatory sequences in or close to MAPT. Those islands with greater than 67% nucleotide identity range in size from 20 to greater than 1700 nucleotides. Over 90 single nucleotide polymorphisms were identified in MAPT that are candidate susceptibility alleles for neurodegenerative disease. The 5′ and 3′ flanking genes for MAPT are the corticotrophin-releasing factor receptor (CRFR) gene and KIAA1267, a gene of unknown function expressed in brain.