Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling (original) (raw)
Related papers
Regulation of TGF-β signaling by Smad7
Acta Biochimica et Biophysica Sinica
Transforming growth factor (TGF)-beta is a pleiotropic cytokine regulating a variety of cellular processes such as cell growth, differentiation, apoptosis, migration, cell adhesion, and immune response. In the well-understood classical TGF-beta signaling pathway, TGF-beta activates Smad signalling via its two cell surface receptors such as TbetaRII and ALK5/TbetaRI, leading to Smad-mediated transcriptional regulation. In addition, TGF-beta may also activate other signaling pathways like mitogen-activated protein kinase, PI3K, etc. The signaling of TGF-beta is finely regulated at different levels. Inhibitory Smads, including Smad6 and Smad7, are key regulators of TGF-beta/bone morphogenetic protein (BMP) signaling by negative feedback loops. They can form stable complexes with activated type I receptors and thereby blocking the phosphorylation of R-Smads, or recruit ubiquitin E3 ligases, such as Smurf1/2, resulting in the ubiquitination and degradation of the activated type I recepto...
Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling
Nature, 1997
TGF-beta signals from the membrane to the nucleus through serine/threonine kinase receptors and their downstream effectors, termed SMAD proteins. The activated TGF-beta receptor induces phosphorylation of two such proteins, Smad2 and Smad3, which form hetero-oligomeric complex(es) with Smad4/DPC4 that translocate to the nucleus, where they then regulate transcriptional responses. However, the mechanisms by which the intracellular signals of TGF-beta are switched off are unclear. Here we report the identification of Smad7, which is related to Smad6. Transfection of Smad7 blocks responses mediated by TGF-beta in mammalian cells, and injection of Smad7 RNA into Xenopus embryos blocks activin/TGF-beta signalling. Smad7 associates stably with the TGF-beta receptor complex, but is not phosphorylated upon TGF-beta stimulation. TGFbeta-mediated phosphorylation of Smad2 and Smad3 is inhibited by Smad7, indicating that the antagonistic effect of Smad7 is exerted at this important regulatory s...
Differential regulation of TGF-beta signaling through Smad2, Smad3 and Smad4
Oncogene, 2003
Smad transcription factors mediate the growth inhibitory effect of transforming growth factor-beta (TGF-beta) in many cell types. Mutational inactivation of Smads has been correlated with loss of responsiveness to TGF-beta-mediated signal transduction. In this study, we compare the contribution of individual Smads to TGF-beta-induced growth inhibition and endogenous gene expression in isogenic cellular backgrounds. Smad2, Smad3 and Smad4 expression were selectively inhibited in differentiation-competent cells by using improved antisense molecules. We found that TGF-beta mediates its inhibitory effect on HaCaT keratinocyte cell growth predominantly through Smad3. Inhibition of Smad3 expression was sufficient to interfere with TGF-beta-induced cell cycle arrest and to induce or suppress endogenous cell cycle regulators. Inhibition of Smad4 expression exhibited a partial effect, whereas inhibition of Smad2 expression had no effect. By gene expression profiling, we identified TGF-beta-d...
Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4
Oncogene, 2003
Smad transcription factors mediate the growth inhibitory effect of transforming growth factor-b (TGF-b) in many cell types. Mutational inactivation of Smads has been correlated with loss of responsiveness to TGF-b-mediated signal transduction. In this study, we compare the contribution of individual Smads to TGF-b-induced growth inhibition and endogenous gene expression in isogenic cellular backgrounds. Smad2, Smad3 and Smad4 expression were selectively inhibited in differentiationcompetent cells by using improved antisense molecules. We found that TGF-b mediates its inhibitory effect on HaCaT keratinocyte cell growth predominantly through Smad3. Inhibition of Smad3 expression was sufficient to interfere with TGF-b-induced cell cycle arrest and to induce or suppress endogenous cell cycle regulators. Inhibition of Smad4 expression exhibited a partial effect, whereas inhibition of Smad2 expression had no effect. By gene expression profiling, we identified TGF-b-dependent genes that are differentially regulated by Smad2 and Smad3 under regular growth conditions on a genome-wide scale. We show that Smad2, Smad3 and Smad4 contribute to the regulation of TGF-b responses to varying extents, and demonstrate, in addition, that these Smads exhibit distinct roles in different cell types.
TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4
The EMBO Journal, 1997
Dijke et al., 1996). The molecular mechanism for TGF-β Japanese Foundation for Cancer Research, and Research for the Future receptor activation, in which a constitutively active type Program, Japan Society for the Promotion of Science, II receptor phosphorylates and activates a type I receptor,
TGF-β signaling, Smads, and tumor suppressors
BioEssays, 1998
The transforming growth factor- (TGF-) superfamily is used throughout animal development for regulating the growth and patterning of many tissue types. During the past few years, rapid progress has been made in deciphering how TGF- signals are transduced from outside the cell to the nucleus. This progress is based on biochemical studies in vertebrate systems and a combination of genetic studies in Drosophila and Caenorhabditis elegans. These studies have identified a novel family of signaling proteins, the Smad family. Smads can act positively and be phosphorylated by TGF--like receptors or can act negatively and prevent activation of the positively acting group. The positively acting Smads translocate to the nucleus, bind DNA, and act as transcriptional activators. Thus, genetic and biochemical studies suggest a very simple signaling pathway, in which Smads are the primary downstream participant.
Smad regulation in TGF-β signal transduction
Journal of Cell Science, 2001
Smad proteins transduce signals from transforming growth factor-β (TGF-β) superfamily ligands that regulate cell proliferation, differentiation and death through activation of receptor serine/threonine kinases. Phosphorylation of receptor-activated Smads (R-Smads) leads to formation of complexes with the common mediator Smad (Co-Smad), which are imported to the nucleus. Nuclear Smad oligomers bind to DNA and associate with transcription factors to regulate expression of target genes. Alternatively, nuclear R-Smads associate with ubiquitin ligases and promote degradation of transcriptional repressors, thus facilitating target gene regulation by TGF-β. Smads themselves can also become ubiquitinated and are degraded by proteasomes. Finally, the inhibitory Smads (I-Smads) block phosphorylation of R-Smads by the receptors and promote ubiquitination and degradation of receptor complexes, thus inhibiting signalling.
SMAD regulation in TGF-beta signal transduction
Journal of Cell Science
Smad proteins transduce signals from transforming growth factor-beta (TGF-beta) superfamily ligands that regulate cell proliferation, differentiation and death through activation of receptor serine/threonine kinases. Phosphorylation of receptor-activated Smads (R-Smads) leads to formation of complexes with the common mediator Smad (Co-Smad), which are imported to the nucleus. Nuclear Smad oligomers bind to DNA and associate with transcription factors to regulate expression of target genes. Alternatively, nuclear R-Smads associate with ubiquitin ligases and promote degradation of transcriptional repressors, thus facilitating target gene regulation by TGF-beta. Smads themselves can also become ubiquitinated and are degraded by proteasomes. Finally, the inhibitory Smads (I-Smads) block phosphorylation of R-Smads by the receptors and promote ubiquitination and degradation of receptor complexes, thus inhibiting signalling.
Identification of novel Smad2 and Smad3 associated proteins in response to TGF-β1
Journal of Cellular Biochemistry, 2008
Transforming growth factor-beta 1 (TGF-β1) is an important growth inhibitor of epithelial cells and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. TGF-β1 signals through the TGF-β type I and type II receptors, and activates the Smad pathway via phosphorylation of Smad2 and Smad3. Since little is known about the selective activation of Smad2 versus Smad3, we set out to identify novel Smad2 and Smad3 interacting proteins in epithelial cells. A nontransformed human cell line was transduced with Myc-His 6 -Smad2 or Myc-His 6 -Smad3-expressing retrovirus and was treated with TGF-β1. Myc-His 6 -Smad2 or Myc-His 6 -Smad3 was purified by tandem affinity purification, eluates were subject to SDS-PAGE and Colloidal Blue staining, and select protein bands were digested with trypsin. The resulting tryptic peptides were analyzed by liquid chromatography and tandem mass spectrometry and the SEQUEST algorithm was employed to identify proteins in the bands. A number of proteins that are known to interact with Smad2 or Smad3 were detected in the eluates. In addition, a number of putative novel Smad2 and Smad3 associated proteins were identified that have functions in cell proliferation, apoptosis, Actin cytoskeleton regulation, cell motility, transcription, and Ras or insulin signaling. Specifically, the interaction between Smad2/3 and the Cdc42 guanine nucleotide exchange factor, Zizimin1, was validated by co-immunoprecipitation. The discovery of these novel Smad2 and/or Smad3 associated proteins may reveal how Smad2 and Smad3 are regulated and/or uncover new functions of Smad2 and Smad3 in TGF-β1 signaling.