Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide (original) (raw)
Related papers
Molecular Cancer Therapeutics, 2007
Multiple genetic aberrations in human gliomas contribute to their highly infiltrative and rapid growth characteristics. Focal adhesion kinase (FAK) regulates tumor migration and invasion. Insulin-like growth factor-I receptor (IGF-IR), whose expression correlates with tumor grade, is involved in proliferation and survival. We hypothesized that inhibiting the phosphorylation of FAK and IGF-IR by NVP-TAE226 (hereafter called TAE226), a novel dual tyrosine kinase inhibitor of FAK and IGF-IR, would suppress the growth and invasion of glioma cells. In culture, TAE226 inhibited extracellular matrix -induced autophosphorylation of FAK (Tyr 397 ). TAE226 also inhibited IGF-I -induced phosphorylation of IGF-IR and activity of its downstream target genes such as MAPK and Akt. TAE226 retarded tumor cell growth as assessed by a cell viability assay and attenuated G 2 -M cell cycle progression associated with a decrease in cyclin B1 and phosphorylated cdc2 (Tyr 15 ) protein expression. TAE226 treatment inhibited tumor cell invasion by at least 50% compared with the control in an in vitro Matrigel invasion assay. Interestingly, TAE226 treatment of tumor cells containing wild-type p53 mainly exhibited G 2 -M arrest, whereas tumor cells bearing mutant p53 underwent apoptosis. Induction of apoptosis by TAE226 was substantiated by detection of caspase-3/7 activation and poly(ADP-ribose) polymerase cleavage and by an Annexin V apoptosis assay. More importantly, TAE226 treatment significantly increased the survival rate of animals in an intracranial glioma xenograft model. Collectively, these data show that blocking the signaling pathways of FAK and IGF-IR with TAE226 has the potential to be an efficacious treatment for human gliomas.
FAK mediates the inhibition of glioma cell migration by truncated 24kDa FGF-2
Biochemical and Biophysical Research Communications, 2009
A truncated form of 24kDa FGF-2 consisting of 86 NH 2 -terminal amino acids (ATE+31) inhibits cell migration in vitro and tumor development and angiogenesis in vivo. Focal adhesion kinase (FAK) is phosphorylated on tyrosine and serine sites after cell stimulation by growth factors. This study examined the effect of ATE+31 on FAK phosphorylation in human glioma cells. FAK and Pyk phosphorylation were evaluated at serines known to be involved with cell migration. We demonstrated that ATE+31 at 3 × 10 −11 M decreases phosphorylation levels of Tyr 407 -FAK and Ser 732 -FAK in the presence of platelet-derived growth factor (PDGF), that ATE+31 in the presence of PDGF alters the distribution of FAK and other phosphotyrosine proteins in the adhesion contacts, and that ATE+31 in the presence of PDGF has no effect on the activation of Pyk2. These data suggest that the inhibition of cell migration by ATE+31 occurs via Tyr 407 -FAK and Ser 732 -FAK.
Journal of Neuro-Oncology
Background The development of resistance to temozolomide (TMZ), a standard chemotherapeutic, limits the effective treatment of glioblastoma (GBM). Focal adhesion kinase (FAK) and proline rich tyrosine kinase 2 (Pyk2) regulate proliferation and invasion of GBM cells. We found that TMZ activates FAK and Pyk2 signaling in GBM. We hypothesized that pharmacological inhibitors of Pyk2/FAK together with TMZ can enhance the inhibitory effect of TMZ on tumor growth and dispersal and improve the treatment outcome. Methods Primary human GBM cell cultures and a C57Bl/6-GL261 mouse glioma implantation model were used. Pyk2 (Tyr579/580) and FAK (Tyr925) phosphorylation was analyzed by western blotting. Viability, cell cycle, migration, invasion and invadopodia formation were investigated in vitro. Animal survival, tumor size and invasion, TUNEL apoptotic cell death and the Ki67 proliferation index were evaluated in vivo upon treatment with TMZ (50 mg/kg, once/day, orally) and the Pyk2/FAK inhibit...
Molecular Cancer Research, 2003
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation may be determining factors in the temporal development of proliferative or migrational phenotypes.
Molecular cancer research : MCR, 2003
The propensity of malignant gliomas to invade surrounding brain tissue contributes to poor clinical outcome. Integrin-mediated adhesion to extracellular matrix regulates the migration and proliferation of many cell types, but its role in glioma progression is undefined. We investigated the role of the cytoplasmic tyrosine kinases FAK and Pyk2, potential integrin effectors, in the phenotypic determination of four different human glioblastoma cell lines. While FAK expression was similar between the four cell lines, increased FAK activity correlated with high proliferation and low migratory rates. In contrast, Pyk2 activity was significantly increased in migratory cell lines and depressed in proliferative cell lines. Overexpression of Pyk2 stimulated migration, whereas FAK overexpression inhibited cell migration and stimulated cellular proliferation. These data suggest that FAK and Pyk2 function as important signaling effectors in gliomas and indicate that their differential regulation...
Neuro-oncology, 2018
GSK2256098 is a novel oral focal adhesion kinase inhibitor. Preclinical studies demonstrate growth inhibition in glioblastoma cell lines. However, rodent studies indicate limited blood-brain barrier penetration. In this expansion cohort within a phase I study, the safety, tolerability, pharmacokinetics and clinical activity of GSK2256098 were evaluated in patients with recurrent glioblastoma. Biodistribution and kinetics of [11C]GSK2256098 were assessed in a sub-study using positron-emission tomography (PET). Patients were treated with GSK2256098 until disease progression or withdrawal due to adverse events (AEs). Serial pharmacokinetic samples were collected on Day 1. On a single day between Days 9-20, patients received a microdose of intravenous [11C]GSK2256098 and scanned with PET over 90 minutes with parallel PK sample collection. Response was assessed by MRI every six weeks. Thirteen patients were treated in three dose cohorts (1000 mg, 750 mg, 500 mg; all dosed twice-daily). T...
Cancer research, 2001
In glioblastoma cells, inhibition of focal adhesion kinase (FAK) by the focal adhesion targeting domain attenuated epidermal growth factor receptor (EGFR) signaling, inhibiting epidermal growth factor-dependent migration. Although the EGFR-specific antagonist PD153035 increased caspase-3 activity, this was independent of FAK activity. Instead, the increase in apoptosis upon inhibition of FAK induced the aggregation of an NH(2)-terminal FAK fragment normally present in the nucleus. A recombinant NH(2)-terminal FAK construct was also targeted to the nucleus and aggregated in apoptotic cells upon coexpression with the focal adhesion targeting domain. Therefore, loss of FAK from the focal adhesions inhibits EGFR signaling at the cell membrane and transmits a proapoptotic signal to an NH(2)-terminal variant of FAK present in the nucleus.
Molecular Cancer Therapeutics, 2014
The failure of current treatment options for glioblastoma stems from their inability to control tumor cell proliferation and invasion. Biologically targeted therapies offer great hope and one promising target is glycogen synthase kinase-3b (GSK3b), implicated in various diseases, including cancer. We previously reported that inhibition of GSK3b compromises the survival and proliferation of glioblastoma cells, induces their apoptosis, and sensitizes them to temozolomide and radiation. Here, we explore whether GSK3b also contributes to the highly invasive nature of glioblastoma. The effects of GSK3b inhibition on migration and invasion of glioblastoma cells were examined by wound-healing and Transwell assays, as well as in a mouse model of glioblastoma. We also investigated changes in cellular microarchitectures, cytoskeletal components, and proteins responsible for cell motility and invasion.
F1000 - Post-publication peer review of the biomedical literature, 2010
Gliomas generally infiltrate the surrounding normal brain parenchyma, a process associated with increased vascular permeability (VP) and dysregulation of the blood-brain barrier (BBB). However, the molecular mechanisms underlying glioma-induced VP in the brain remain poorly understood. Utilizing a conditional, endothelial-specific deletion of the focal adhesion kinase FAK in the mouse (FAK CKO), we show that FAK is critical for destabilization of the tumor endothelium in tumor-bearing mice, with mutant mice exhibiting a relatively stabilized vasculature to wild-type mice (FAK WT). Tumor vessels in the FAK CKO mice displayed reduced VP compared to FAK WT mice, resulting in reduced tumor growth. Additionally, FAK CKO mice displayed partial restoration of cell-cell junction proteins in the tumor vessels and astrocyteendothelial interactions in tumors, revealing an additional role of astrocytes in mediating tumorinduced VP. Together, these results provide genetic evidence that FAK is a mediator of tumorinduced VP in the brain. Our findings may help understand how therapeutics might be used to regulate cell type-specific interactions to restore BBB structure/function in cancer and perhaps other pathological conditions.
L1 stimulation of human glioma cell motility correlates with FAK activation
Journal of Neuro-oncology
The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass upregulate ADAM10 to proteolyze surface L1 and the resultant ectodomain increases human glioma cell migration and invasion by binding to integrin receptors, activating FAK, and increasing turnover of focal complexes.