New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments (original) (raw)
Related papers
The Science of The Total Environment, 1998
. In this article, exposure to trihalomethanes THMs in indoor swimming pools as a consequence of water chlorination is reported. Environmental and biological monitoring of THMs was performed in order to assess the uptake of these substances after a defined period in five competitive swimmers, regularly attending an indoor swimming pool to train for competition during four sampling sessions. Analyses were performed by gas-chromatogra-Ž . Ž . phy and the following THMs were detected: chloroform CHCl , bromodichloromethane CHBrCl , dibro-3 2 . CHBr Cl . After 1 h swimming, the THM uptake is approx. seven times higher than at rest: a THM mean uptake of 2 Ž . 221 grh 177 grh, 26 grh and 18 grh for CHCl , CHBrCl and CHBr Cl, respectively was evaluated at an 3 2 2 environmental concentration of approx. 200 grm 3 . ᮊ 1998 Elsevier Science B.V. All rights reserved.
Archives of Environmental Health: An International Journal, 1995
ABSTRAa. The influence of working or swimming in indoor swimming pools on the concentrations of four trihalomethanes (haloforms) in blood and urine was investigated. Different groups (bath attendants, agonistic swimmers, normal swimmers, sampling person) were compared. The proportions of trihalomethanes in blood and urine correlated roughly with those in water and ambient air. Higher levels of physical activity were correlated with higher concentrations. Within one night after exposure in the poollhe blood concentrations usually were reduced to the pre-exposure values. Secretion of trichloromethane in urine was found to be less Ihan 10%.
Occupational exposure to trihalomethanes in indoor swimming pools
Science of The Total Environment, 2001
The study evaluated occupational exposure to trihalomethanes (THMs) in indoor swimming pools. Thirty-two subjects, representing the whole workforce employed in the five public indoor swimming pools in the city of Modena (Northern Italy) were enrolled. Both environmental and biological monitoring of THMs exposure were performed. Environmental concentrations of THMs in different areas inside the swimming pools (at the poolside, in the reception area and in the engine-room) were measured as external exposure index, while individual exposure of swimming pool employees was estimated by THMs concentration in alveolar air. The levels of THMs observed in swimming pool water ranged from 17.8 to 70.8 microg/l; the mean levels of THMs in ambient air were 25.6+/-24.5 microg/m3 in the engine room, 26.1+/-24.3 microg/m3 in the reception area and 58.0+/-22.1 microg/m3 at the poolside. Among THMs, only chloroform and bromodichloromethane were always measured in ambient air, while dibromochloromethane was detected in ambient air rarely and bromoform only once. Biological monitoring results showed a THMs mean value of 20.9+/-15.6 microg/m3. Statistically significant differences were observed according to the main job activity: in pool attendants, THMs alveolar air were approximately double those observed in employees working in other areas of the swimming pools (25.1+/-16.5 microg/m3 vs. 14.8+/-12.3 microg/m3, P < 0.01). THMs in alveolar air samples were significantly correlated with THMs concentrations in ambient air (r = 0.57; P < 0.001). Indoor swimming pool employees are exposed to THMs at ambient air levels higher than the general population. The different environmental exposure inside the swimming pool can induce a different internal dose in exposed workers. The correlation found between ambient and alveolar air samples confirms that breath analysis is a good biological index of occupational exposure to these substances at low environmental levels.
Influence of physical activity in the intake of trihalomethanes in indoor swimming pools
Environmental research, 2015
This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum...
Environment International, 2012
Water disinfection In-door swimming pools Trihalomethanes Bromoform Exhaled air pollutants Volatile organic compounds This first study of trihalomethanes (THMs) in swimming pools using bromine agents for water disinfection under real conditions shows that the mixtures of these compounds are largely dominated by bromoform in a similar process as chloroform becomes the dominant THM in pools disinfected with chlorine agents. Bromoform largely predominates in air and water of the pool installations whose concentration changes are linearly correlated. However, the air concentrations of bromoform account for about 6-11% of the expected concentrations according to theoretical partitioning defined by the Henry law. Bromoform in exhaled air of swimmers is correlated with the air concentrations of this disinfectant by-product in the pool building. Comparison of the THM exhaled air concentrations between swimmers and volunteers bathing in the water without swimming or standing in the building outside the water suggest that physical activity enhance exposure to these disinfectant by-products. They also indicate that in swimming pools, besides inhalation, dermal absorption is a relevant route for the incorporation of THMs, particularly those with lower degree of bromination.
Water Science and Technology: Water Supply
Certain aspects of the distribution of disinfection by-products (DBPs) in the air of indoor swimming pools, the exposure of the users, and possible health effects have not been well documented. To determine the distribution of trihalomethanes (THM), measurements were performed at 0.05 m, 0.60 m and 1.50 m above the water surface. These heights were chosen to measure the exposure in the breathing zone of the users. Air samples were collected from two indoor swimming pool facilities in Norway. Facility 1 uses calcium hypochlorite and facility 2 uses sodium hypochlorite for water treatment. In facility 2, one of the swimming pools is filled with 33% seawater, while the other pools in this study were filled with freshwater. Higher values were measured at 0.05 m compared to 1.50 m. Negligible differences between the measurements at 0.60 m and 1.50 m above floor levels were obtained. In average, 282% higher concentrations of total THM (tTHM) were measured in facility 2. Different disinfection products and ventilation concepts are possible explanations. Swimmers are exposed to higher concentrations compared to users by the poolside. For future studies, it is crucial to measure as close to the water surface as possible.
Human exposure and risk of trihalomethanes during continuous showering events
Science of The Total Environment, 2020
h i g h l i g h t s Common showering facilities need better method for exposure analysis from THMs. The successive showering events pose higher risks through inhalation route. Reduced showering duration and enhanced ventilation can lower risk from THMss. Increased time gap between successive showering events reduced risk. Swimming pools, students dorm, factory residence are vulnerable to higher risk.
Annals of Occupational Hygiene, 2015
Introduction: Chlorination is a method commonly used to keep indoor swimming pool water free from pathogens. However, chlorination of swimming pools produces several potentially hazardous by-products as the chlorine reacts with nitrogen containing organic matter. Up till now, exposure assessments in indoor swimming pools have relied on stationary measurements at the poolside, used as a proxy for personal exposure. However, measurements at fixed locations are known to differ from personal exposure. Methods: Eight public swimming pool facilities in four Swedish cities were included in this survey. Personal and stationary sampling was performed during day or evening shift. Samplers were placed at different fixed positions around the pool facilities, at ~1.5 m above the floor level and 0-1 m from the poolside. In total, 52 personal and 110 stationary samples of trichloramine and 51 personal and 109 stationary samples of trihalomethanes, were collected. Results: The average concentration of trichloramine for personal sampling was 71 µg m −3 , ranging from 1 to 240 µg m −3 and for stationary samples 179 µg m −3 , ranging from 1 to 640 µg m −3. The air concentrations of chloroform were well below the occupational exposure limit (OEL). For the linear regression analysis and prediction of personal exposure to trichloramine from stationary sampling, only data from personal that spent >50% of their workday in the pool area were included. The linear regression analysis showed a correlation coefficient (r 2) of 0.693 and a significant regression coefficient β of 0.621; (95% CI = 0.329-0.912, P = 0.001). Conclusion: The trichloramine exposure levels determined in this study were well below the recommended air concentration level of 500 µg m −3 ; a WHO reference value based on stationary sampling. Our regression data suggest a relation between personal exposure and area sampling of 1:2, implying an OEL of 250 µg m −3 based on personal sampling.