Ubx4 Modulates Cdc48 Activity and Influences Degradation of Misfolded Proteins of the Endoplasmic Reticulum (original) (raw)

Ubx2 links the Cdc48 complex to ER-associated protein degradation

Nature Cell Biology, 2005

Endoplasmic reticulum (ER)-associated protein degradation requires the dislocation of selected substrates from the ER to the cytosol for proteolysis via the ubiquitin-proteasome system. The AAA ATPase Cdc48 (known as p97 or VCP in mammals) has a crucial, but poorly understood role in this transport step. Here, we show that Ubx2 (Sel1) mediates interaction of the Cdc48 complex with the ER membrane-bound ubiquitin ligases Hrd1 (Der3) and Doa10. The membrane protein Ubx2 contains a UBX domain that interacts with Cdc48 and an additional UBA domain. Absence of Ubx2 abrogates breakdown of ER proteins but also that of a cytosolic protein, which is ubiquitinated by Doa10. Intriguingly, our results suggest that recruitment of Cdc48 by Ubx2 is essential for turnover of both ER and non-ER substrates, whereas the UBA domain of Ubx2 is specifically required for ER proteins only. Thus, a complex comprising the AAA ATPase, a ubiquitin ligase and the recruitment factor Ubx2 has a central role in ER-associated proteolysis.

Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation

Proceedings of the National Academy of Sciences, 2013

Quality control and degradation of misfolded proteins are essential processes of all cells. The endoplasmic reticulum (ER) is the entry site of proteins into the secretory pathway in which protein folding occurs and terminally misfolded proteins are recognized and retrotranslocated across the ER membrane into the cytosol. Here, proteins undergo polyubiquitination by one of the membrane-embedded ubiquitin ligases, in yeast Hrd1/Der3 (HMG-CoA reductase degradation/degradation of the ER) and Doa10 (degradation of alpha), and are degraded by the proteasome. In this study, we identify cytosolic Ubr1 (E3 ubiquitin ligase, N-recognin) as an additional ubiquitin ligase that can participate in ER-associated protein degradation (ERAD) in yeast. We show that two polytopic ERAD substrates, mutated transporter of the mating type a pheromone, Ste6* (sterile), and cystic fibrosis transmembrane conductance regulator, undergo Ubr1-dependent degradation in the presence and absence of the canonical ER ubiquitin ligases. Whereas in the case of Ste6* Ubr1 is specifically required under stress conditions such as heat or ethanol or in the absence of the canonical ER ligases, efficient degradation of human cystic fibrosis transmembrane conductance regulator requires function of Ubr1 already in wild-type cells under standard growth conditions. Together with the Hsp70 (heat shock protein) chaperone Ssa1 (stress-seventy subfamily A) and the AAA-type ATPase Cdc48 (cell division cycle), Ubr1 directs the substrate to proteasomal degradation. These data unravel another layer of complexity in ERAD.

The Tissue-Specific Rep8/UBXD6 Tethers p97 to the Endoplasmic Reticulum Membrane for Degradation of Misfolded Proteins

PLoS ONE, 2011

The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ERderived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.

Membrane Topology and Function of Der3/Hrd1p as a Ubiquitin-Protein Ligase (E3) Involved in Endoplasmic Reticulum Degradation

Journal of Biological Chemistry, 2001

The endoplasmic reticulum contains a protein quality control system that discovers malfolded or unassembled secretory proteins and subjects them to degradation in the cytosol. This requires retrograde transport of the respective proteins from the endoplasmic reticulum back to the cytosol via the Sec61 translocon. In addition, a fully competent ubiquitination machinery and the 26 S proteasome are necessary for retrotranslocation and degradation. Ubiquitination of mutated and malfolded proteins of the endoplasmic reticulum is dependent mainly on the ubiquitin-conjugating enzyme Ubc7p. In addition, several new membrane components of the endoplasmic reticulum are required for degradation. Here we present the topology of the previously discovered RING-H2 finger protein Der3/Hrd1p, one of the new components of the endoplasmic reticulum membrane. The protein spans the membrane six times. The amino terminus and the carboxyl terminus containing the RING finger domain face the cytoplasm. Altogether, RING finger-dependent ubiquitination of malfolded carboxypeptidase yscY in vivo, as well as of Der3/Hrd1p itself in vitro and RING finger-dependent binding of Ubc7p, uncovers Der3/Hrd1p as the ubiquitin-protein ligase (E3) of the endoplasmic reticulum-associated protein degradation process.

Ubiquitin-specific protease 25 functions in Endoplasmic Reticulum-associated degradation

PloS one, 2012

Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.

The VCP/p97 and YOD1 Proteins Have Different Substrate-dependent Activities in Endoplasmic Reticulum-associated Degradation (ERAD)

Journal of Biological Chemistry, 2015

Background: The AAA-ATPase VCP/p97 and the deubiquitinase YOD1 are required in the endoplasmic reticulum-associated degradation (ERAD) of misfolded proteins. Results: Three ERAD substrates (NHK-␣1〈⌻, NS1-kLC, and Tetherin) become cytosolically exposed independently of p97 and YOD1, whereas MHC-I␣-and CD4-induced retro-translocation requires them. Conclusion: VCP/p97 and YOD1 have distinct substrate-dependent activities in ERAD. Significance: We demonstrate two different levels of p97 and YOD1 requirements in ERAD. Endoplasmic reticulum-associated degradation (ERAD) is an essential quality control mechanism of the folding state of proteins in the secretory pathway that targets unfolded/misfolded polypeptides for proteasomal degradation. The cytosolic p97/ valosin-containing protein is an essential ATPase for degradation of ERAD substrates. It has been considered necessary during retro-translocation to extract proteins from the endoplasmic reticulum that are otherwise supposed to accumulate in the endoplasmic reticulum lumen. The activity of the p97-associated deubiquitinylase YOD1 is also required for substrate disposal. We used the in vivo biotinylation retro-translocation assay in mammalian cells under conditions of impaired p97 or YOD1 activity to directly discriminate their requirements and diverse functions in ERAD. Using different ERAD substrates, we found that both proteins participate in two distinct retro-translocation steps. For CD4 and MHC-I␣, which are induced to degradation by the HIV-1 protein Vpu and by the CMV immunoevasins US2 and US11, respectively, p97 and YOD1 have a retro-translocation-triggering role. In contrast, for three other spontaneous ERAD model substrates (NS1, NHK-␣1AT, and BST-2/Tetherin), p97 and YOD1 are required in the downstream events of substrate deglycosylation and proteasomal degradation. Valosin-containing protein, p97 (VCP/p97, Cdc48 in yeast) is an abundant and conserved ATPase belonging to the type II ATPases family, associated with diverse cellular activities (1). p97 is organized into a homohexameric ring-shaped complex. Each protomer contains a flexible N-terminal domain and two ATPase domains (2). The N-terminal portion is involved in interactions with a large number of partners having distinct domains (i.e. UBX/UBX-like (ubiquitin regulatory X), UBD (ubiquitin D), PUB (PNGase/ubiquitin-associated), SHP box, PUL (PLAP (phospholipase A2-activating protein), Ufd3p, and Lub1p), VIM (VCP-interacting motif), VBM (VCP-binding motif)) (3). Many of the various p97 functions are connected to the ubiquitin pathway (4-12). Endoplasmic reticulum-associated degradation (ERAD) 5 represents the main mechanism by which cells control the folding state of molecules within the secretory pathway. Several ER-resident proteins, including chaperones and lectins, participate in the recognition of misfolded or terminally unfolded molecules that are then targeted for proteasomal degradation (13, 14). A crucial step in ERAD, still poorly understood, is the retro-translocation from the ER lumen to the cytosol (15-21). Cytosolic p97 is a key player of ERAD in complex with the heterodimeric co-factor formed by ubiquitin fusion-degradating protein 1 (Ufd1) and nuclear protein localization protein 4 homolog (Npl4) (22, 23). The common view is that the p97-Ufd1-Npl4 complex is recruited to the ER membrane, where several different membrane-embedded ERAD protein components having p97-binding motifs reside (6, 24, 25). The precise mechanism and function of the p97 complex is not very clear. It is well established, however, that loss of p97 ATPase activity blocks the proteasomal degradation of several different ERAD substrates (26-29). These results have been generally interpreted as a stringent requirement of p97 activity in the retrotranslocation step, therefore concluding that stabilization of the substrate protein occurs in the ER lumen or in partially * The authors declare that they have no conflicts of interest with the contents of this article.

A "Retrochaperone" Function for Cdc48: the Cdc48 Complex is Required for Retrotranslocated ERAD-M Substrate Solubility

Journal of Biological Chemistry, 2017

A surprising feature of endoplasmic reticulum (ER)-associated degradation (ERAD) is the movement, or retrotranslocation, of ubiquitinated substrates from the ER lumen or membrane to the cytosol where they are degraded by the 26S proteasome. Multispanning ER membrane proteins, called ERAD-M substrates, are retrotranslocated to the cytosol as full-length intermediates during ERAD, and we have investigated how they maintain substrate solubility. Using an in vivo assay, we show that retrotranslocated ERAD-M substrates are moved to the cytoplasm as part of the normal ERAD pathway, where they are part of a solely proteinaceous complex. Using proteomics and direct biochemical confirmation, we found that Cdc48 serves as a critical “retrochaperone” for these ERAD-M substrates. Cdc48 binding to retrotranslocated, ubiquitinated ERAD-M substrates is required for their solubility; removal of the polyubiquitin chains or competition for binding by addition of free polyubiquitin liberated Cdc48 fro...

Cdc48-independent proteasomal degradation coincides with a reduced need for ubiquitylation

Scientific Reports, 2015

Ubiquitin fusion degradation (UFD) substrates are delivered at the proteasome by a handover mechanism involving the ubiquitin-selective chaperone Cdc48 and the ubiquitin shuttle factor Rad23. Here, we show that introduction of a 20 amino acid peptide extension not only rendered degradation independent of Cdc48, in line with the model that this chaperone is involved in early unfolding events of tightly folded substrates, but at the same time relieved the need for efficient polyubiquitylation and the ubiquitin shuttle factor Rad23. Removal of the ubiquitylation sites in the N-terminal UFD signal made the degradation of this substrate strictly dependent on the peptide extension and also on Cdc48 and, importantly the presence of a functional ubiquitylation machinery. This suggests that the extension in the absence of N-terminal ubiquitylation sites is not properly positioned to engage the unfoldase machinery of the proteasome. Thus the need for efficient ubiquitylation and Cdc48 in facilitating proteasomal degradation are tightly linked but can be bypassed in the context of UFD substrates by the introduction of an unstructured extension. Our data suggest that polyubiquitin-binding complexes acting upstream of the proteasome, rather than the proteasome itself, can be primary determinants for the level of ubiquitylation required for protein degradation.

Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex

Faculty reviews, 2022

Proteins that are expressed on membrane surfaces or secreted are involved in all aspects of cellular and organismal life, and as such require extremely high fidelity during their synthesis and maturation. These proteins are synthesized at the endoplasmic reticulum (ER) where a dedicated quality control system (ERQC) ensures only properly matured proteins reach their destinations. An essential component of this process is the identification of proteins that fail to pass ERQC and their retrotranslocation to the cytosol for proteasomal degradation. This study by Wu et al. reports a cryo-electron microscopy (cryo-EM) structure of the five-protein channel through which aberrant proteins are extracted from the ER, providing insights into how recognition of misfolded proteins is coupled to their transport through a hydrophobic channel that acts to thin the ER membrane, further facilitating their dislocation to the cytosol1.