Mouse models of diabetic nephropathy (original) (raw)

Establishment of a Diabetic Mouse Model with Progressive Diabetic Nephropathy

The American Journal of Pathology, 2005

Although diabetic animal models exist, no single animal model develops renal changes identical to those seen in humans. Here we show that transgenic mice that overexpress inducible cAMP early repressor (ICER I␥) in pancreatic ␤ cells are a good model to study the pathogenesis of diabetic nephropathy. Although ICER I␥ transgenic mice exhibit extremely high blood glucose levels throughout their lives, they survive long enough to develop diabetic nephropathy. Using this model we followed the progress of diabetic renal changes compared to those seen in humans. By 8 weeks of age, the glomerular filtration rate (GFR) was already increased, and glomerular hypertrophy was prominent. At 20 weeks, GFR reached its peak, and urine albumin excretion rate was elevated. Finally, at 40 weeks, diffuse glomerular sclerotic lesions were prominently accompanied by increased expression of collagen type IV and laminin and reduced expression of matrix metalloproteinase-2. Nodular lesions were absent, but glomerular basement membrane thickening was prominent. At this point, GFR declined and urinary albumin excretion rate increased, causing a nephrotic state with lower serum albumin and higher serum total cholesterol. Thus, similar to human diabetic nephropathy, ICER I␥ transgenic mice exhibit a stable and progressive phenotype of diabetic kidney disease due solely to chronic hyperglycemia without other modulating factors.

Rodent animal models: from mild to advanced stages of diabetic nephropathy

Inflammopharmacology, 2014

Diabetic nephropathy (DN) is a secondary complication of both type 1 and type 2 diabetes, resulting from uncontrolled high blood sugar. 30-40 % of diabetic patients develop DN associated with a poor life expectancy and end-stage renal disease, causing serious socioeconomic problems. Although an exact pathogenesis of DN is still unknown, several factors such as hyperglycemia, hyperlipidemia, hypertension and proteinuria may contribute to the progression of renal damage in diabetic nephropathy. DN is confirmed by measuring blood urea nitrogen, serum creatinine, creatinine clearance and proteinuria. Clinical studies show that intensive control of hyperglycemia and blood pressure could successfully reduce proteinuria, which is the main sign of glomerular lesions in DN, and improve the renal prognosis in patients with DN. Diabetic rodent models have traditionally been used for doing research on pathogenesis and developing novel therapeutic strategies, but have limitations for translational research. Diabetes in animal models such as rodents are induced either spontaneously or by using chemical, surgical, genetic, or other techniques and depicts many clinical features or related phenotypes of the disease. This review discusses the merits and demerits of the models, which are used for many reasons in the research of diabetes and diabetic complications.

Podocyte biology in diabetic nephropathy

Kidney International, 2007

Glomerular visceral epithelial cells, namely podocytes, are highly specialized cells and give rise to primary processes, secondary processes, and finally foot processes. The foot processes of neighboring podocytes interdigitate, leaving between them filtration slits. These are bridged by an extracellular substance, known as the slit diaphragm, which plays a major role in establishing size-selective barrier to protein loss. Furthermore, podocytes are known to synthesize matrix molecules to the glomerular basement membrane (GBM), including type IV collagen, laminin, entactin, and agrin. Because diabetic nephropathy is clinically characterized by proteinuria and pathologically by glomerular hypertrophy and GBM thickening with foot process effacement, podocytes have been the focus in the field of research on diabetic nephropathy. As a result, many investigations have demonstrated that the diabetic milieu per se, hemodynamic changes, and local growth factors such as transforming growth factor-b and angiotensin II, which are considered mediators in the pathogenesis of diabetic nephropathy, induce directly and/or indirectly hypertrophy, apoptosis, and structural changes, and increase type IV collagen synthesis in podocytes. This review explores some of the structural and functional changes of podocytes under diabetic conditions and their role in the development and progression of diabetic nephropathy.

Initial Characterization of a Rat Model of Diabetic Nephropathy

Diabetes, 2004

The lack of an appropriate animal model that spontaneously develops diabetic nephropathy has been a significant limitation in the search for genetic factors underlying this disease and the development of new therapeutic strategies to prevent progressive renal disease in diabetes. We introgressed the mitochondria and some passenger loci from the FHH/EurMcwi rat into the genetic background of diabetic GK rats, creating a new rat strain, T2DN (T2DN/Mcwi). Despite the high degree of genetic similarity between T2DN and GK rats (97% at 681 loci), diabetes ensues earlier and progresses more severely in T2DN rats. T2DN rats exhibit proteinuria by 6 months of age, accompanied by renal histologic abnormalities such as focal glomerulosclerosis, mesangial matrix expansion, and thickening of basement membranes. These characteristics progress over time, and nearly all T2DN rats exhibit diffuse global glomerulosclerosis with nodule formation and arteriolar hyalinosis by 18 months of age. The histo...

Revisiting Experimental Models of Diabetic Nephropathy

International Journal of Molecular Sciences, 2020

Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to...

New Experimental Models of Diabetic Nephropathy in Mice Models of Type 2 Diabetes: Efforts to Replicate Human Nephropathy

Experimental Diabetes Research, 2012

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. The use of experimental models of DN has provided valuable information regarding many aspects of DN, including pathophysiology, progression, implicated genes, and new therapeutic strategies. A large number of mouse models of diabetes have been identified and their kidney disease was characterized to various degrees. Most experimental models of type 2 DN are helpful in studying early stages of DN, but these models have not been able to reproduce the characteristic features of more advanced DN in humans such as nodules in the glomerular tuft or glomerulosclerosis. The generation of new experimental models of DN created by crossing, knockdown, or knockin of genes continues to provide improved tools for studying DN. These models provide an opportunity to search for new mechanisms involving the development of DN, but their shortcomings should be recognized as well. Moreover, it is important to recognize that the genetic background has a substantial effect on the susceptibility to diabetes and kidney disease development in the various models of diabetes.

Characterization of diabetic nephropathy in a transgenic model of hypoinsulinemic diabetes

AJP: Renal Physiology, 2006

Genetic mouse models provide a unique opportunity to investigate gene function in the natural course of the disease. Although diabetic nephropathy (DN) in models of type II diabetes has been well characterized, diabetic renal disease in hypoinsulinemic diabetic mice is still incompletely understood. Here, we characterized renal changes in the pdx1 PB -HNF6 transgenic mouse that exhibits β-cell dysfunction and nonobese hypoinsulinemic diabetes. Male transgenics developed hyperglycemia by the age of 7 weeks and survived over a year without insulin treatment. Diabetes ensued earlier and progressed more severely in the HNF6 males than the females. The HNF6 males exhibited albuminuria as early as 10 weeks of age and the urinary albumin excretion increased with age, exceeding 150 µg/24 h at 11 months of age. Diabetic males developed renal hypertrophy after 7 weeks of age, whereas glomerular hyperfiltration was not observed in the mice. Hypertension and hyperlipidemia were not observed in the diabetic mice. Histological analysis of the HNF6 kidneys displayed diabetic glomerular changes, including glomerular enlargement, diffuse mesangial proliferation and matrix expansion, thickened glomerular basement membrane and arteriolar hyalinosis. Mesangial matrix accumulation increased with age, resulting in nodular lesions by 44 weeks of age. Immunohistochemistry showed accumulation of type IV collagen and TGFβ1 in the mesangial area. No significant immune complex deposition was observed in the HNF6 glomeruli. Thus, the HNF6 mouse exhibits diabetic renal changes that parallel the early phase of human DN. The model should facilitate studies of genetic and environmental factors that may affect DN in hypoinsulinemic diabetes.