New Experimental Models of Diabetic Nephropathy in Mice Models of Type 2 Diabetes: Efforts to Replicate Human Nephropathy (original) (raw)

Establishment of a Diabetic Mouse Model with Progressive Diabetic Nephropathy

The American Journal of Pathology, 2005

Although diabetic animal models exist, no single animal model develops renal changes identical to those seen in humans. Here we show that transgenic mice that overexpress inducible cAMP early repressor (ICER I␥) in pancreatic ␤ cells are a good model to study the pathogenesis of diabetic nephropathy. Although ICER I␥ transgenic mice exhibit extremely high blood glucose levels throughout their lives, they survive long enough to develop diabetic nephropathy. Using this model we followed the progress of diabetic renal changes compared to those seen in humans. By 8 weeks of age, the glomerular filtration rate (GFR) was already increased, and glomerular hypertrophy was prominent. At 20 weeks, GFR reached its peak, and urine albumin excretion rate was elevated. Finally, at 40 weeks, diffuse glomerular sclerotic lesions were prominently accompanied by increased expression of collagen type IV and laminin and reduced expression of matrix metalloproteinase-2. Nodular lesions were absent, but glomerular basement membrane thickening was prominent. At this point, GFR declined and urinary albumin excretion rate increased, causing a nephrotic state with lower serum albumin and higher serum total cholesterol. Thus, similar to human diabetic nephropathy, ICER I␥ transgenic mice exhibit a stable and progressive phenotype of diabetic kidney disease due solely to chronic hyperglycemia without other modulating factors.

Initial Characterization of a Rat Model of Diabetic Nephropathy

Diabetes, 2004

The lack of an appropriate animal model that spontaneously develops diabetic nephropathy has been a significant limitation in the search for genetic factors underlying this disease and the development of new therapeutic strategies to prevent progressive renal disease in diabetes. We introgressed the mitochondria and some passenger loci from the FHH/EurMcwi rat into the genetic background of diabetic GK rats, creating a new rat strain, T2DN (T2DN/Mcwi). Despite the high degree of genetic similarity between T2DN and GK rats (97% at 681 loci), diabetes ensues earlier and progresses more severely in T2DN rats. T2DN rats exhibit proteinuria by 6 months of age, accompanied by renal histologic abnormalities such as focal glomerulosclerosis, mesangial matrix expansion, and thickening of basement membranes. These characteristics progress over time, and nearly all T2DN rats exhibit diffuse global glomerulosclerosis with nodule formation and arteriolar hyalinosis by 18 months of age. The histo...

Revisiting Experimental Models of Diabetic Nephropathy

International Journal of Molecular Sciences, 2020

Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to...

Mouse models of diabetic nephropathy

Current Opinion in Nephrology and Hypertension, 2011

Purpose-Progress in identification of effective therapies for diabetic nephropathy continues to be limited by the lack of ideal animal models. Here we review the current status of some leading murine models of this disorder.

Rodent animal models: from mild to advanced stages of diabetic nephropathy

Inflammopharmacology, 2014

Diabetic nephropathy (DN) is a secondary complication of both type 1 and type 2 diabetes, resulting from uncontrolled high blood sugar. 30-40 % of diabetic patients develop DN associated with a poor life expectancy and end-stage renal disease, causing serious socioeconomic problems. Although an exact pathogenesis of DN is still unknown, several factors such as hyperglycemia, hyperlipidemia, hypertension and proteinuria may contribute to the progression of renal damage in diabetic nephropathy. DN is confirmed by measuring blood urea nitrogen, serum creatinine, creatinine clearance and proteinuria. Clinical studies show that intensive control of hyperglycemia and blood pressure could successfully reduce proteinuria, which is the main sign of glomerular lesions in DN, and improve the renal prognosis in patients with DN. Diabetic rodent models have traditionally been used for doing research on pathogenesis and developing novel therapeutic strategies, but have limitations for translational research. Diabetes in animal models such as rodents are induced either spontaneously or by using chemical, surgical, genetic, or other techniques and depicts many clinical features or related phenotypes of the disease. This review discusses the merits and demerits of the models, which are used for many reasons in the research of diabetes and diabetic complications.

Genetics of Diabetic Nephropathy: Lessons From Mice

Seminars in Nephrology, 2007

Although diabetic nephropathy occurs only in a minority of diabetic patients (ϳ30%), it is the major single cause of end-stage renal disease in the United States. Hyperglycemia and hypertension are important factors predisposing patients to nephropathy, however, accumulating evidence points to critical genetic factors that predispose only a subset of diabetic patients to nephropathy. Defining the genes responsible for nephropathy risk in human populations has proven challenging. Comparative genomics using the robust genetic reagents available in the laboratory mouse should provide a complementary approach to defining genes that may predispose to diabetic nephropathy in mice and human beings. In this article we review studies that have started to identify genetic risk factors for diabetic nephropathy in mice and the multiple approaches that may be used to elucidate the genetic pathogenesis of this disorder. Semin Nephrol 27:237-247 . Age-matched controls for MRL/MpJ and FVB/NJ strains were not available (NA) for studying. *P Ͻ .05 (t test) versus age-matched controls; § P Ͻ .05 (ANOVA) versus diabetic C57BL/6J, A/J, and MRL/MpJ strains; ʈ P Ͻ .05 (ANOVA) versus controls in other studied strains.