Adsorption of acid dyes from aqueous solution on activated bleaching earth (original) (raw)

Adsorption of acid dyes from aqueous solution onto the surface of acid activated Nirgudi Leaf powder (AANLP): A case study

The plant powder of Nirgudi (L. Vitex negudo) were activated with sulphuric acid and used as low cost easily available and renewable biological adsorbent for the removal of acid dyes (Acid blue, Acid red and Malachite green) from aqueous solution. Batch experiments were carried out for adsorption kinetics and isotherms. Operating variable studied were pH, temperature, adsorbent dose, initial concentration of adsorbate. Adsorption capacity seems to be enhanced by increasing temperature, adsorbent dose and for pH. Maximum dye adsorption was found to be in acidic range. Nirgudi Leaf powder (NLP) treated with Sulphuric acid (H 2 SO 4) solution increased the adsorption efficiency upto 80 percent. Experimental adsorption kinetic data were fitted to be Lagergren first order. Equilibrium data were well represented by the Freundlich Langmuir isotherm model for all tested adsorption systems. Beside these the thermodynamic study has showed that the acid dye adsorption onto the surface of Acid Activated Nirgudi Leaf powder (AANLP) was physical adsorption and the process was spontaneous and exothermic.

Adsorption of Acid Dyes from aqueous solution onto the surface of acid activated Jaswand leaf powder: A case Study

Oriental Journal of Chemistry

The plant powder of Nirgudi (L. Vitex negudo) were activated with sulphuric acid and used as low cost easily available and renewable biological adsorbent for the removal of acid dyes (Acid blue, Acid red and Malachite green) from aqueous solution. Batch experiments were carried out for adsorption kinetics and isotherms. Operating variable studied were pH, temperature, adsorbent dose, initial concentration of adsorbate. Adsorption capacity seems to be enhanced by increasing temperature, adsorbent dose and for pH. Maximum dye adsorption was found to be in acidic range. Nirgudi Leaf powder (NLP) treated with Sulphuric acid (H 2 SO 4 ) solution increased the adsorption efficiency upto 80 percent. Experimental adsorption kinetic data were fitted to be Lagergren first order. Equilibrium data were well represented by the Freundlich Langmuir isotherm model for all tested adsorption systems. Beside these the thermodynamic study has showed that the acid dye adsorption onto the surface of Acid Activated Nirgudi Leaf powder (AANLP) was physical adsorption and the process was spontaneous and exothermic.

Adsorption of Acid Dyes from aqueous solution onto the surface of acid activated Jaswand leaf powder

The plant powder of Nirgudi (L. Vitex negudo) were activated with sulphuric acid and used as low cost easily available and renewable biological adsorbent for the removal of acid dyes (Acid blue, Acid red and Malachite green) from aqueous solution. Batch experiments were carried out for adsorption kinetics and isotherms. Operating variable studied were pH, temperature, adsorbent dose, initial concentration of adsorbate. Adsorption capacity seems to be enhanced by increasing temperature, adsorbent dose and for pH. Maximum dye adsorption was found to be in acidic range. Nirgudi Leaf powder (NLP) treated with Sulphuric acid (H 2 SO 4 ) solution increased the adsorption efficiency upto 80 percent. Experimental adsorption kinetic data were fitted to be Lagergren first order. Equilibrium data were well represented by the Freundlich Langmuir isotherm model for all tested adsorption systems. Beside these the thermodynamic study has showed that the acid dye adsorption onto the surface of Acid Activated Nirgudi Leaf powder (AANLP) was physical adsorption and the process was spontaneous and exothermic.

Adsorption of acid dyes from aqueous solution onto the surface of acid activated Kammoni Leaf powder: A case study

The plant powder of Nirgudi (L. Vitex negudo) were activated with sulphuric acid and used as low cost easily available and renewable biological adsorbent for the removal of acid dyes (Acid blue, Acid red and Malachite green) from aqueous solution. Batch experiments were carried out for adsorption kinetics and isotherms. Operating variable studied were pH, temperature, adsorbent dose, initial concentration of adsorbate. Adsorption capacity seems to be enhanced by increasing temperature, adsorbent dose and for pH. Maximum dye adsorption was found to be in acidic range. Nirgudi Leaf powder (NLP) treated with Sulphuric acid (H 2 SO 4 ) solution increased the adsorption efficiency upto 80 percent. Experimental adsorption kinetic data were fitted to be Lagergren first order. Equilibrium data were well represented by the Freundlich Langmuir isotherm model for all tested adsorption systems. Beside these the thermodynamic study has showed that the acid dye adsorption onto the surface of Acid Activated Nirgudi Leaf powder (AANLP) was physical adsorption and the process was spontaneous and exothermic.

A Comparitive Study of Adsorption Behaviour of a Dye Using Agro Wastes as Adsorbents

The use of cheap and eco-friendly adsorbents are studied as an alternative substitution of activated carbon for the removal of dyes from wastewater. Laboratory investigations were done to find the potential of Rice husk ash(RHA), Activated Rice Husk (ARH) and Azadirecta indica leaves (Neem) powder (NLP )to remove methylene blue dye from aqueous solution . ARH was prepared from rice husk treated with nitric acid and RHA Prepared by heating in muff furnace at 300 0 C. Neem leaves are sundried for few days and then dried at low temperature (<105°C) for 24 hrs in hot air oven to remove moisture content. The effects of various experimental parameters, such as pH , adsorbent dosage and contact time were investigated. Langmuir adsorption isotherm was applied and R 2 value was calculated which shows, Langmuir adsorption is a good fit for the experimental data. The result shows that the 85 % colour removal efficiency can be achieved at the dose of 50 g/l of ARH . 90 % colour removal efficiency is achieved at the adsorbent dose of 40 g/l of RHA. With increase in RHA dose the efficiency increased upto 96 %. 81% of colour removal efficiency is achieved with NLP .

Factors controlling the adsorption of acid blue 113 dye from aqueous solution by dried C. edulis plant as natural adsorbent

Arabian Journal of Geosciences, 2016

Contamination of surface water and groundwater by organic pollutants is a serious problem due to their persistence, bioaccumulation and biomagnification through food webs. Since the removal of dyes from wastewater is considered an environmental challenge and government legislation requires textile wastewater to be treated, therefore there is a constant need to have an effective process that can efficiently remove these dyes. The aim of the present study is to evaluate the potentiality of dried Carpobrotus edulis plant as low-cost adsorbent for the removal of the industrial acid blue 113 dye from aqueous solutions using the batch equilibration technique. The effects of different physicochemical parameters such as adsorbent dose, contact time, initial dye concentration, solution pH and temperature on adsorption rate of anionic AB113 dye on microparticles of dried C. edulis plant were investigated. The experimental data were analyzed by using mathematical models to determine the thermodynamic parameters. The negative values of free energy change indicated the spontaneous nature of the adsorption and negative value of enthalpy change suggested the exothermic nature of the adsorption process. These results indicate that dried C. edulis plant as an environmentally friendly adsorbent could be potentially used for the removal of anionic dyes from aqueous solutions.

Adsorption of Basic and Acidic Dyes onto Agricultural Wastes

International Letters of Chemistry, Physics and Astronomy, 2016

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22...

Adsorption of Reactive Dyes from Aqueous Solution Using Activated Carbon Prepared from Plantain Leaf Sheath Waste

2020

All parts of the plantain are widely used in India for various purposes. But plantain leaf sheath always ends up as waste material which accumulates as a biowaste. The present study focuses on the preparation of activated carbon using phosphoric acid as activating agent, and its efficacy as an adsorbent for the removal of reactive dyes, Reactive Green 19, and Reactive Red 141. Batch adsorption studies have been conducted and optimum adsorption conditions were determined as a function of contact time, initial dye concentration, adsorbent dosage, and pH. The experimental data were analyzed using Langmuir, Freundlich and Temkin isotherm models. The pseudo-first and second-order, intraparticle diffusion, and Elovich models were used to analyze the kinetic parameters of the adsorption system. Under the optimum conditions (initial dye concentration = 200 mg L–1, adsorbent dose = 1 g, pH = 2, contact time = 220 min for reactive green 19 and 180 min for reactive red 141), maximum percentage...