Differences in head shape of the European eel, Anguilla anguilla (L.) (2000) (original) (raw)

Dimorphism throughout the European eel's life cycle: are ontogenetic changes in head shape related to dietary differences?

Journal of Anatomy, 2018

A well-known link exists between an organism's ecology and morphology. In the European eel, a dimorphic head has been linked to differences in feeding ecology, with broad-headed eels consuming harder prey items than narrow-headed ones. Consequently, we hypothesized that broad-heads should exhibit a cranial musculoskeletal system that increases bite force and facilitates the consumption of harder prey. Using 3Dreconstructions and a bite model, we tested this hypothesis in two life stages: the sub-adult yellow eel stage and its predecessor, the elver eel stage. This allowed us to test whether broad-and narrow-headed phenotypes show similar trait differences in both life stages and whether the dimorphism becomes more pronounced during ontogeny. We show that broad-headed eels in both stages have larger jaw muscles and a taller coronoid, which are associated with higher bite forces. This increased bite force together with the elongated upper and lower jaws in broad-headed eels can also improve grip during spinning behavior, which is used to manipulate hard prey. Head shape variation in European eel is therefore associated with musculoskeletal variation that can be linked to feeding ecology. However, although differences in muscle volume become more pronounced during ontogeny, this was not the case for skeletal features.

Diet-induced phenotypic plasticity in European eel (Anguilla anguilla)

The Journal of experimental biology, 2016

Two phenotypes are present within the European eel population: broad-heads and narrow-heads. The expression of these phenotypes has been linked to several factors, such as diet and differential growth. The exact factors causing this dimorphism, however, are still unknown. In this study, we performed a feeding experiment on glass eels from the moment they start to feed. Eels were either fed a hard diet, which required biting and spinning behavior, or a soft diet, which required suction feeding. We found that the hard feeders develop a broader head and a larger adductor mandibulae region than eels that were fed a soft diet, implying that the hard feeders are capable of larger bite forces. Next to this, soft feeders develop a sharper and narrower head, which could reduce hydrodynamic drag, allowing more rapid strikes towards their prey. Both phenotypes were found in a control group, which were given a combination of both diets. These phenotypes were, however, not as extreme as the hard...

Broader head, stronger bite: In vivo bite forces in European eel Anguilla anguilla

Journal of Fish Biology, 2017

This work examined three different phenotypes of the yellow-eel stage of the European eel Anguilla anguilla, broad-heads, narrow-heads and eels with an intermediate head shape. The aim was to see whether broad-headed A. anguilla, which generally consume harder, larger prey, such as crustaceans and fish, exerted greater bite force than the narrow-headed variant, which mainly consume soft, small prey such as chironomid larvae. It was found that in 99 yellow A. anguilla, in vivo bite force of broad-heads are higher compared with narrow-heads and intermediates.

Unimodal head-width distribution of the European eel (Anguilla anguilla L.) from the Zeeschelde does not support disruptive selection

PeerJ

Since the early 20th century, European eels (Anguilla anguilla L.) have been dichotomously classified into ‘narrow’ and ‘broad’ heads. These morphs are mainly considered the result of a differential food choice, with narrow heads feeding primarily on small/soft prey and broad heads on large/hard prey. Yet, such a classification implies that head-width variation follows a bimodal distribution, leading to the assumption of disruptive selection. We investigated the head morphology of 272 eels, caught over three consecutive years (2015–2017) at a single location in the Zeeschelde (Belgium). Based on our results, BIC favored a unimodal distribution, while AIC provided equal support for a unimodal and a bimodal distribution. Notably, visualization of the distributions revealed a strong overlap between the two normal distributions under the bimodal model, likely explaining the ambiguity under AIC. Consequently, it is more likely that head-width variation followed a unimodal distribution, i...

Bimodality in head shape in European eel

2011

Abstract The existence of two morphotypes, broadheaded and narrowheaded, in European eels Anguilla anguilla is common knowledge among fishermen and eel biologists in Europe. To test whether European eels really are dimorphic in head shape, a total of 277 specimens from two locations in Belgium (Scheldt–Lippenbroek and Lake Weerde), in combination with a larger data set of 725 eels from river systems across Flanders (the northern part of Belgium) were examined.

Differential gene expression in narrow- and broad-headed European glass eels (Anguilla anguilla) points to a transcriptomic link of head shape dimorphism with growth rate and chemotaxis

Molecular Ecology, 2017

One of the major challenges in evolutionary biology is to understand the mechanisms underlying morphological dimorphism and plasticity, including the genomic basis of traits and links to ecology. At the yellow eel stage of the European eel (Anguilla anguilla), two morphotypes are found: broad-and narrow-heads. This dimorphism has been linked to dietary differences, with broad-heads feeding on harder, larger prey than narrow-heads. However, recent research showed that both morphotypes could be distinguished at the glass eel stage, the non-feeding predecessor of the yellow eel stage, implying that non-dietary factors play a role in the development of this head shape dimorphism. Here, we used transcriptome profiling (RNAseq) to identify differentially expressed genes between broad-and narrow-headed glass eels. We found 260 significantly differentially expressed genes between the morphotypes, of which most were related to defense and immune responses. Interestingly, two genes involved in growth (soma and igf2) were significantly up-regulated in narrow-heads, while nine genes involved in chemotaxis showed significant differential expression. Thus, we found support for the observation that head shape is associated with somatic growth, with fast-growing eels developing a narrower head. Additionally, observations in the wild have shown that slowgrowers prefer freshwater, while fast-growers prefer brackish water. The differential expression of genes involved in chemotaxis seems to indicate that glass eel growth rate and Accepted Article This article is protected by copyright. All rights reserved. habitat choice are linked. We hypothesize that two levels of segregation could take place in the European eel: first according to habitat choice, secondly according to feeding preference.

Broader head, stronger bite: In vivo bite forces in European eel Anguilla anguilla

Journal of Fish Biology, 2017

This work examined three different phenotypes of the yellow-eel stage of the European eel Anguilla anguilla, broad-heads, narrow-heads and eels with an intermediate head shape. The aim was to see whether broad-headed A. anguilla, which generally consume harder, larger prey, such as crustaceans and fish, exerted greater bite force than the narrow-headed variant, which mainly consume soft, small prey such as chironomid larvae. It was found that in 99 yellow A. anguilla, in vivo bite force of broad-heads are higher compared with narrow-heads and intermediates.

Saving the European Eel: How Morphological Research Can Help in Effective Conservation Management

Integrative and Comparative Biology

The European eel (Anguilla anguilla) is a critically endangered species, whose recruitment stocks have declined to nearly 1% compared to the late 70s. An amalgam of factors is responsible for this, among them migration barriers, pollution, habitat loss, parasite infection, and overfishing. A lot of recent studies focus on aspects that can increase the mature silver eel escapement rate, such as identifying migration barriers and developing passageways or addressing the impact of pollution on the eel’s health. However, little attention is given to the eel’s morphology in function of management measures. Worryingly, less than 50% of the currently installed management plans reach their goals, strongly indicating that more information is needed about the eel’s ecology and behavior. Functional morphological studies provide insights on how species perform behaviors crucial for survival, such as feeding and locomotion, but also in how environmental changes can affect or limit such behaviors...