Overexpression of wild-type human APP in mice causes cognitive deficits and pathological features unrelated to Aβ levels (original) (raw)

Intracellular Aβ pathology and early cognitive impairments in a transgenic rat overexpressing human amyloid precursor protein: a multidimensional study

Acta Neuropathologica Communications, 2014

Numerous studies have implicated the abnormal accumulation of intraneuronal amyloid-β (Aβ) as an important contributor to Alzheimer's disease (AD) pathology, capable of triggering neuroinflammation, tau hyperphosphorylation and cognitive deficits. However, the occurrence and pathological relevance of intracellular Aβ remain a matter of controversial debate. In this study, we have used a multidimensional approach including high-magnification and super-resolution microscopy, cerebro-spinal fluid (CSF) mass spectrometry analysis and ELISA to investigate the Aβ pathology and its associated cognitive impairments, in a novel transgenic rat model overexpressing human APP. Our microscopy studies with quantitative co-localization analysis revealed the presence of intraneuronal Aβ in transgenic rats, with an immunological signal that was clearly distinguished from that of the amyloid precursor protein (APP) and its C-terminal fragments (CTFs). The early intraneuronal pathology was accompanied by a significant elevation of soluble Aβ 42 peptides that paralleled the presence and progression of early cognitive deficits, several months prior to amyloid plaque deposition. Aβ 38 , Aβ 39 , Aβ 40 and Aβ 42 peptides were detected in the rat CSF by MALDI-MS analysis even at the plaque-free stages; suggesting that a combination of intracellular and soluble extracellular Aβ may be responsible for impairing cognition at early time points. Taken together, our results demonstrate that the intraneuronal development of AD-like amyloid pathology includes a mixture of molecular species (Aβ, APP and CTFs) of which a considerable component is Aβ; and that the early presence of these species within neurons has deleterious effects in the CNS, even before the development of full-blown AD-like pathology.

Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein

Molecular Brain Research, 1999

In Alzheimer's disease AD , a progressive decline of cognitive functions is accompanied by neuropathology that includes the degeneration of neurons and the deposition of amyloid in plaques and in the cerebrovasculature. We have proposed that a fragment of the Ž. Ž. Alzheimer amyloid precursor protein APP comprising the carboxyl-terminal 100 amino acids of this molecule APP-C100 plays a crucial role in the neurodegeneration and subsequent cognitive decline in AD. To test this hypothesis, we performed behavioral analyses on transgenic mice expressing APP-C100 in the brain. The results revealed that homozygous APP-C100 transgenic mice were significantly impaired in cued, spatial and reversal performance of a Morris water maze task, that the degree of the impairment in the spatial learning was age-dependent, and that the homozygous mice displayed significantly more degeneration of neurons in Ammon's horn of the hippocampal formation than did heterozygous or control mice. Among the heterozygotes, females were relatively more impaired in their spatial learning than were males. These findings show that expression of APP-C100 in the brain can cause age-dependent cognitive impairments that are accompanied by hippocampal degeneration.

Alzheimer's disease-like pathological features in transgenic mice expressing the APP intracellular domain

Proceedings of the National Academy of Sciences, 2009

The hypothesis that amyloid-β (Aβ) peptides are the primary cause of Alzheimer's disease (AD) remains the best supported theory of AD pathogenesis. Yet, many observations are inconsistent with the hypothesis. Aβ peptides are generated when amyloid precursor protein (APP) is cleaved by presenilins, a process that also produces APP intracellular domain (AICD). We previously generated AICD-overexpressing transgenic mice that showed abnormal activation of GSK-3β, a pathological feature of AD. We now report that these mice exhibit additional AD-like characteristics, including hyperphosphorylation and aggregation of tau, neurodegeneration and working memory deficits that are prevented by treatment with lithium, a GSK-3β inhibitor. Consistent with its potential role in AD pathogenesis, we find AICD levels to be elevated in brains from AD patients. The in vivo findings that AICD can contribute to AD pathology independently of Aβ have important therapeutic implications and may explain so...

Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the β-amyloid peptide intracellularly in hippocampal and cortical neurons

Neuroscience, 2004

The pathological significance of intracellular Aβ accumulation in vivo is not yet fully understood. To address this, we have studied transgenic rats expressing Alzheimer's-related transgenes that accumulate Aβ intraneuronally in the cerebral and hippocampal cortices but do not develop extracellular amyloid plaques. In these rats, the presence of intraneuronal Aβ is sufficient to provoke up-regulation of the phosphorylated form of extracellular-regulated kinase (ERK) 2 and its enzymatic activity in the hippocampus while no changes were observed in the activity or phosphorylation status of other putative tau kinases such as p38, glycogen synthase kinase 3, and cycline-dependent kinase 5. The increase in active phospho-ERK2 was accompanied by increased levels of tau phosphorylation at S396 and S404 ERK2 sites and a decrease in the phosphorylation of the CREB kinase p90RSK. In a water maze paradigm, male transgenic rats displayed a mild spatial learning deficit relative to control littermates. Our results suggest that in the absence of plaques, intraneuronal accumulation of Aβ peptide correlates with the initial steps in the tau-phosphorylation cascade, alterations in ERK2 signaling and impairment of higher CNS functions in male rats.

Alzheimer’s disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression

Background: Alzheimer’s disease (AD) is the most frequent form of dementia in the elderly and no effective treatment is currently available. The mechanisms triggering AD onset and progression are still imperfectly dissected. We aimed at deciphering the modifications occurring in vivo during the very early stages of AD, before the development of amyloid deposits, neurofibrillary tangles, neuronal death and inflammation. Most current AD models based on Amyloid Precursor Protein (APP) overproduction beginning from in utero, to rapidly reproduce the histological and behavioral features of the disease within a few months, are not appropriate to study the early steps of AD development. As a means to mimic in vivo amyloid APP processing closer to the human situation in AD, we used an adeno-associated virus (AAV)-based transfer of human mutant APP and Presenilin 1 (PS1) genes to the hippocampi of two-month-old C57Bl/6 J mice to express human APP, without significant overexpression and to specifically induce its amyloid processing. Results: The human APP, βCTF and Aβ42/40 ratio were similar to those in hippocampal tissues from AD patients. Three months after injection the murine Tau protein was hyperphosphorylated and rapid synaptic failure occurred characterized by decreased levels of both PSD-95 and metabolites related to neuromodulation, on proton magnetic resonance spectroscopy (1H-MRS). Astrocytic GLT-1 transporter levels were lower and the tonic glutamatergic current was stronger on electrophysiological recordings of CA1 hippocampal region, revealing the overstimulation of extrasynaptic N-methyl D-aspartate receptor (NMDAR) which precedes the loss of long-term potentiation (LTP). These modifications were associated with early behavioral impairments in the Open-field, Y-maze and Morris Mater Maze tasks. Conclusions: Altogether, this demonstrates that an AD-like APP processing, yielding to levels of APP, βCTF and Aβ42/Aβ40 ratio similar to those observed in AD patients, are sufficient to rapidly trigger early steps of the amyloidogenic and Tau pathways in vivo. With this strategy, we identified a sequence of early events likely to account for disease onset and described a model that may facilitate efforts to decipher the factors triggering AD and to evaluate early neuroprotective strategies.

Neuropeptide alterations in the hippocampal formation and cortex of transgenic mice overexpressing β-amyloid precursor protein (APP) with the Swedish double mutation (APP23)

Neurobiology of Disease, 2003

The role of neuropeptides and the significance of peptidergic mechanisms in neurodegenerative diseases are still unclear. In the periphery, nerve injury results in dramatic changes in the expression of neuropeptides. An important question regards to what extent similar changes occur, and similar mechanisms operate, after lesions and/or degeneration in the brain. The purpose of this work is, therefore, to study neuropeptides with regard to their presence and distribution in the APP23 mouse (HuAPP(751) K670M/N671L under the murine Thy-1 promoter), a model for Alzheimer's disease, or cerebral amyloidosis, using the immunohistochemical technique. In addition, tyrosine hydroxylase and acetylcholinesterase were analyzed. This study shows marked neuropeptide changes in the hippocampal formation and the ventral cortex, whereas the dorsolateral neocortex was less affected. There was a considerable variation with regard to peptide expression among animals of the same age which was related to the variation in Abeta deposition. Dystrophic and varicose fibers containing galanin, neuropeptide Y, enkephalin, and especially cholecystokinin were commonly seen in close proximity to amyloid plaques. In addition, generalized changes were observed, such as increases of enkephalin and neuropeptide Y in stratum lacunosum moleculare and of neuropeptide Y, enkephalin, and dynorphin in mossy fibers. In contrast, cholecystokinin was decreased in mossy fibers. Comparatively small differences were observed between wild-type and transgenic mice with regard to tyrosine hydroxylase (noradrenergic but also dopaminergic fibers) and acetylcholine esterase (mainly cholinergic fibers). The increase of neuropeptides in dystrophic fibers in this model may represent a response to nerve injury caused by the amyloid accumulation and may reflect attempts to counteract degeneration by initiating protective and/or regenerative processes.

Many Neuronal and Behavioral Impairments in Transgenic Mouse Models of Alzheimer's Disease Are Independent of Caspase Cleavage of the Amyloid Precursor Protein

Journal of Neuroscience, 2010

Previous studies suggested that cleavage of the amyloid precursor protein (APP) at aspartate residue 664 by caspases may play a key role in the pathogenesis of Alzheimer's disease. Mutation of this site (D664A) prevents caspase cleavage and the generation of the C-terminal APP fragments C31 and Jcasp, which have been proposed to mediate amyloid-␤ (A␤) neurotoxicity. Here we compared human APP transgenic mice with (B254) and without (J20) the D664A mutation in a battery of tests. Before A␤ deposition, hAPP-B254 and hAPP-J20 mice had comparable hippocampal levels of A␤ 1-42. At 2-3 or 5-7 months of age, hAPP-B254 and hAPP-J20 mice had similar abnormalities relative to nontransgenic mice in spatial and nonspatial learning and memory, elevated plus maze performance, electrophysiological measures of synaptic transmission and plasticity, and levels of synaptic activity-related proteins. Thus, caspase cleavage of APP at position D664 and generation of C31 do not play a critical role in the development of these abnormalities.

Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer's disease

Journal of Alzheimer's disease : JAD, 2014

Alzheimer's disease (AD) can be considered as a disease of memory in its initial clinical stages. Amyloid-β (Aβ) peptide accumulation is central to the disease initiation leading later to intracellular neurofibrillary tangles (NFTs) of cytoskeletal tau protein formation. It is under discussion whether different Aβ levels of aggregation, concentration, brain area, and/or time of exposure might be critical to the disease progression, as well as which intracellular pathways it activates. The aim of the present work was to study memory-related early molecular and behavioral alterations in a mouse model of AD, in which a subtle deregulation of the physiologic function of Aβ can be inferred. For this purpose we used triple-transgenic (3xTg) mice, which develop Aβ and tau pathology resembling the disease progression in humans. Memory impairment in novel object recognition task was evident by 5 months of age in 3xTg mice. Hippocampus and prefrontal cortex extra-nuclear protein extracts ...