Influence of Baculovirus-Host Cell Interactions on Complex N-Linked Glycosylation of a Recombinant Human Protein (original) (raw)
Related papers
Glycobiology, 1998
The potential of insect cell cultures and larvae infected with recombinant baculoviruses to produce authentic recombinant glycoproteins cloned from mammalian sources was investigated. A comparison was made of the N-linked glycans attached to secreted alkaline phosphatase (SEAP) produced in four species of insect larvae and their derived cell lines plus one additional insect cell line and larvae of one additional species. These data survey N-linked oligosaccharides produced in four families and six genera of the order Lepidoptera. Recombinant SEAP expressed by recombinant isolates of Autographa californica and Bombyx mori nucleopolyhedroviruses was purified from cell culture medium, larval hemolymph or larval homogenates by phosphate affinity chromatography. The N-linked oligosaccharides were released with PNGase-F, labeled with 8-aminonaphthalene-1-3-6-trisulfonic acid, fractionated by polyacrylamide gel electrophoresis, and analyzed by fluorescence imaging.
Glycoconjugate J, 1999
Glycosylation, the most extensive co-and post-translational modi®cation of eukaryotic cells, can signi®cantly affect biological activity and is particularly important for recombinant glycoproteins in human therapeutic applications. The baculovirus-insect cell expression system is a popular tool for the expression of heterologous proteins and has an excellent record of producing high levels of biologically active eukaryotic proteins. Insect cells are capable of glycosylation, but their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. A previous study demonstrated that an immediate early recombinant baculovirus could be used to extend the insect cell N-glycosylation pathway by contributing bovine b-1,4 galactosyltransferase (GalT) immediately after infection. Lectin blotting assays indicated that this ectopically expressed enzyme could transfer galactose to an N-linked glycan on a foreign glycoprotein expressed later in infection. In the current study, glycans were isolated from total Sf-9 cell glycoproteins after infection with the immediate early recombinant baculovirus encoding GalT,¯uorescently conjugated and analyzed by electrophoresis in combination with exoglycosidase digestion. These direct analyses clearly demonstrated that Sf-9 cells infected with this recombinant baculovirus can synthesize galactosylated N-linked glycans.
Glycoconjugate journal, 1999
Glycosylation, the most extensive co- and post-translational modification of eukaryotic cells, can significantly affect biological activity and is particularly important for recombinant glycoproteins in human therapeutic applications. The baculovirus-insect cell expression system is a popular tool for the expression of heterologous proteins and has an excellent record of producing high levels of biologically active eukaryotic proteins. Insect cells are capable of glycosylation, but their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. A previous study demonstrated that an immediate early recombinant baculovirus could be used to extend the insect cell N-glycosylation pathway by contributing bovine beta-1,4 galactosyltransferase (GalT) immediately after infection. Lectin blotting assays indicated that this ectopically expressed enzyme could transfer galactose to an N-linked glycan on a foreign glycoprotein expressed later in infection. In the cu...
Novel Insect Cell Line Capable of Complex N‐Glycosylation and Sialylation of Recombinant Proteins
Biotechnology Progress, 2003
Paucimannose or oligomannose structures are usually attached to glycoproteins produced by insect cells, while mammalian glycoproteins usually have complex glycans. The lack of complex glycosylation has limited the use of the insect cell baculovirus expression vector system (BEVS), despite its high productivity and versatility. The availability of cell lines capable of complex glycosylation can overcome such a problem and potentially increase the utility of BEVS. In this work the capability of two novel cell lines, one from Pseudaletia unipuncta (A7S) and one from Danaus plexippus (DpN1), to produce and glycosylate a recombinant protein (secreted human placental alkaline phosphatase, SeAP) was assessed. SeAP produced by Tn5B1–4 cells at a low passage number (<200) was utilized for comparison. The optimal conditions for the production of SeAP by DpN1 cells were defined, and the glycosylation profiles of SeAP produced by the cell lines were quantitatively determined. Both the A7S an...
Biotechnology and Bioengineering, 2002
The effect of dissolved oxygen concentration on human secreted alkaline phosphatase (SEAP) glycosylation by the insect cell±baculovirus expression system was investigated in a well-controlled bioreactor. Oligomannose-type N-linked glycans (i.e., Man2 to Man6 and Man3F) were present in SEAP produced by Spodoptera frusiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines. The relative amounts of the most highly processed glycans (i.e., Man3F and Man2 in the SEAP from Sf-9 and Tn-5B1-4 cells, respectively) were signi®cantly higher at 50% of air saturation than at either 10% or 190% of air saturation. That is, glycan processing was inhibited at both low and high dissolved oxygen concentrations.
Glycobiology, 2014
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5′-diphospho (GDP)-4-dehydro-6-deoxy-D-mannose reductase (Rmd), which consumes the GDP-L-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-L-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd + baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Applied Biochemistry and Biotechnology, 2002
Secreted human alkaline phosphatase (SEAP, a model protein containing a single N-glycan chain) was expressed in Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) insect cell lines infected with recombinant Autographa californica multiple nuclear polyhedrovirus expressing SEAP under control of the polyhedrin promoter. SDS-PAGE showed that both systems expressed fairly pure rSEAP products. The rSEAP expression level was 7.0 U/mL in Tn-5B1-4, higher than the 4.1 U/mL produced by Sf-9. Kinetic analysis showed that V max and K m of human placental SEAP were approx 10-fold higher than that of rSEAP, whereas the V max and K m of rSEAP prepared using both insect cell lines were comparable. To characterize the recombinant SEAP (rSEAP) glycosylation, the purified rSEAP was digested with PNGase F to release the N-glycan chains. Glycan analysis showed the presence of oligomannose-type N-linked glycans (i.e., Man 2-8 GlcNAc 2 and FucMan 3 or 4 GlcNAc 2) in rSEAP from Sf9 and Tn-5B1-4 cell lines. The proportions of these oligosaccharide structures were different in the two cell lines. Man 4 GlcNAc 2 and FucMan 4 GlcNAc 2 were the major rSEAP N-glycans produced in Sf-9 cells, while Man 2 GlcNAc 2 was the major rSEAP N-glycan produced in Tn-5B1-4 cells.
International Journal of Molecular Sciences
The ability to control the glycosylation pattern of recombinant viral glycoproteins represents a major prerequisite before their use as vaccines. The aim of this study consisted of expressing the large soluble ectodomain of glycoprotein B (gB) from Human Cytomegalovirus (HMCV) in Nicotiana tabacum Bright Yellow-2 (BY-2) suspension cells and of comparing its glycosylation profile with that of gB produced in Chinese hamster ovary (CHO) cells. gB was secreted in the BY-2 culture medium at a concentration of 20 mg/L and directly purified by ammonium sulfate precipitation and size exclusion chromatography. We then measured the relative abundance of N-glycans present on 15 (BY-2) and 17 (CHO) out of the 18 N-sites by multienzymatic proteolysis and mass spectrometry. The glycosylation profile differed at each N-site, some sites being occupied exclusively by oligomannosidic type N-glycans and others by complex N-glycans processed in some cases with additional Lewis A structures (BY-2) or wi...