X-ray Absorption Studies of Human Matrix Metalloproteinase-2 (MMP-2) Bound to a Highly Selective Mechanism-based Inhibitor. COMPARISON WITH THE LATENT AND ACTIVE FORMS OF THE ENZYME (original) (raw)
Related papers
Structural Basis for Potent Slow Binding Inhibition of Human Matrix Metalloproteinase-2 (MMP-2)
Journal of Biological Chemistry, 2003
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.
X-ray structure of a novel matrix metalloproteinase inhibitor complexed to stromelysin
Protein Science, 2001
A new class of matrix metalloproteinase (MMP) inhibitors has been identified by screening a collection of compounds against stromelysin. The inhibitors, 2,4,6-pyrimidine triones, have proven to be potent inhibitors of gelatinases A and B. An X-ray crystal structure of one representative compound bound to the catalytic domain of stromelysin shows that the compounds bind at the active site and ligand the active-site zinc. The pyrimidine triones mimic substrates in forming hydrogen bonds to key residues in the active site, and provide opportunities for placing appropriately chosen groups into the S1Ј specificity pocket of MMPs. A number of compounds have been synthesized and assayed against stromelysin, and the variations in potency are explained in terms of the binding mode revealed in the X-ray crystal structure.
PloS one, 2011
Matrix metalloproteinases (MMP) are well-known biological targets implicated in tumour progression, homeostatic regulation, innate immunity, impaired delivery of pro-apoptotic ligands, and the release and cleavage of cell-surface receptors. Hence, the development of potent and selective inhibitors targeting these enzymes continues to be eagerly sought. In this paper, a number of alloxan-based compounds, initially conceived to bias other therapeutically relevant enzymes, were rationally modified and successfully repurposed to inhibit MMP-2 (also named gelatinase A) in the nanomolar range. Importantly, the alloxan core makes its debut as zinc binding group since it ensures a stable tetrahedral coordination of the catalytic zinc ion in concert with the three histidines of the HExxHxxGxxH metzincin signature motif, further stabilized by a hydrogen bond with the glutamate residue belonging to the same motif. The molecular decoration of the alloxan core with a biphenyl privileged structure allowed to sample the deep S 1 9 specificity pocket of MMP-2 and to relate the high affinity towards this enzyme with the chance of forming a hydrogen bond network with the backbone of Leu116 and Asn147 and the side chains of Tyr144, Thr145 and Arg149 at the bottom of the pocket. The effect of even slight structural changes in determining the interaction at the S 1 9 subsite of MMP-2 as well as the nature and strength of the binding is elucidated via molecular dynamics simulations and free energy calculations. Among the herein presented compounds, the highest affinity (pIC 50 = 7.06) is found for BAM, a compound exhibiting also selectivity (.20) towards MMP-2, as compared to MMP-9, the other member of the gelatinases.
Journal of Medicinal Chemistry, 2009
The mode of binding and the activity of the first two non-zinc chelating, potent, and selective inhibitors of human neutrophil collagenase are reported. The crystal structures of the catalytic domain of MMP-8, respectively complexed with each inhibitor, reveals that both ligands are deeply inserted into the primary specificity subsite S 1 ′, where they induce a similar conformational change of the surrounding loop that is endowed with the main specificity determinants of MMPs. Accord to this rearrangement, both inhibitors remove the floor of the pocket formed by the Y227 side-chain, rendering available an extra binding region never explored before. The present data show that potent and more selective inhibitors can be obtained by developing ligands able to interact with the selectivity regions of the enzyme rather than with the catalytic zinc ion, which is the common feature of all MMP members.
Journal of Inorganic Biochemistry, 2013
The key role of some matrix metalloproteinases (MMPs) on several pathological processes, including carcinogenesis and tumor growth, makes the development of MMP inhibitors (MMPIs) an attractive approach for cancer therapy. We present herein an integrated approach for the development of a new series of inhibitors of MMP2 and MMP14, two enzymes over-expressed by human ovarian cancer. As a first step, a new series of single model compounds bearing different zinc-binding groups (ZBGs), such as carboxylic, hydroxamic acid, hydrazide and sulfonylhydrazide groups, were studied and revealed reasonably good capacity for the Zn(II) chelation in solution and for the MMP inhibition. Aimed at further reinforcing the biological activity of these MMPIs as anti-cancer agents, a selection of those models was extra-functionalized with benzothiazole (BTA), a group with recognized antitumor activity. Analysis of the results obtained for these bifunctional compounds, in particular the inhibitory activity against MMP2 and MMP14 as well as the anti-proliferative activity on the A2780 ovarian cancer cell line, allowed to understand the activity dependence on the type of ZBG, as well as the relevance of the BTA moiety. Overall, the evidenced BTA-associated activity improvements on enzyme inhibition and cell antiproliferactivity, combined with the hydrolytic stability revealed by the hydrazide group, suggest that these new bifunctional BTA-hydrazide derivatives should be taken in consideration for the development of new generations of MMPIs with anti-cancer activity.
Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013–2023)
Molecules
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, c...