Location specific climate change scenario and its impact on rice and wheat in Central Indian Punjab (original) (raw)
Related papers
Agricultural Water Management, 2013
The study focuses on (i) obtaining PRECIS climate change scenario (A1B) data for Ludhiana location and minimizing its bias, (ii) simulation of its impact on crop yield, crop duration, water and nitrogen-balance and -use efficiency of rice-wheat cropping system with CropSyst model and (iii) mitigation of climate change impact by shifting trans-/planting dates of the crops. Model simulations predict reduction in crop yields in future associated with shortening of growth period due to increased temperature. Yield reduction was more with increase in maximum temperature than minimum; and in finer-than coarsertextured soil. Increased rainfall in future would decrease irrigation water requirement of crops but would not offset the adverse effect of increased temperature. Although evapotranspiration and nitrogen uptake would decrease in the end century, yet relatively more decrease in yield would lower water use and nitrogen use efficiency. Shifting trans-/planting dates of rice and wheat to 15 days later than the current would minimize yield reduction in the mid-and end-century.
Journal of Water and Climate Change, 2021
The changing climate affects natural resources that impart a negative impact on crop yield and food security. It is thus imperative to identify agro-climate wise, area-specific adaptation options to ensure food security. This study, therefore, evaluated some feasible adaptation options for two staple food grain crops, rice and wheat, in different agro-climatic regions (ACRs) of Eastern India. Alteration in transplanting date, seedling age, and fertilizer management (rate and split of fertilizer) for rice; and sowing date, fertilizer management, and deficit irrigation scheduling for wheat, are assessed as adaptation options. Crop environment and resource synthesis (DSSAT) model is used to simulate the crop yield using different plausible adaptation options to projected climate scenarios. Findings show that shifting transplanting/sowing date, and nitrogen fertilizer application at 120% of recommended nitrogen dose with four splits could be an effective adaptation for rice and wheat cr...
Regional Environmental Change, 2012
The present study focuses on (1) impact of climate change scenarios on crop yields in rice-wheat cropping system in central Indian Punjab and assessment of shifting trans-/planting date as an adaptation strategy to mitigate that impact. Climate scenarios were derived from General Circulation Model's simulations viz. Hadley Center Coupled Model Version 3, Australia's Commonwealth Scientific and Industrial Research Organization Mk2 and Second Version of Canadian Center for Climate Modeling and Analysis Coupled Global Climate Model. Crop duration and yields were simulated with CropSyst model. Simulation analysis showed decline in crop yields depending upon changed levels of temperature and CO 2 in different scenarios. The magnitude of yield decline was highest in 2080 under the A2 scenario of the CCCMA model. Under the changed climate, shifting trans-/planting date from 171st to 178th for rice and from 309th to 324th Julian day for wheat resulted in least reduction in crop yields and surfaced as a practical adaptation measure for sustaining yields in future.
2020
A simulation study was conducted to analyse the effect of projected changes in climatic parameters on yield of cereal (rice, maize and wheat) crops in different agro-climatic zones of Punjab state. The summary of projected changes in temperature and rainfall (Table I) along with baseline (2010-2021) values during the growing season of respective crops in the state as simulated by Ensemble model under two Representative Concentration Pathways (RCP 4.5 and RCP 6.0) and three time periods (EC : 2030-50, MC : 2051-70 and LC : 2071-90) are given below: Projected changes in maximum temperature • Rice season-An increase in maximum temperature from the baseline (35.4 o C) is predicted under RCPs 4.5 and 6.0 respectively by 1.3 and 1.2 o C during EC, by 1.8 and 1.7 o C during MC and by 2.2 and 2.0 o C during LC. • Maize season-An increase in maximum temperature from the baseline (35.2 o C) is predicted under RCPs 4.5 and 6.0 respectively by 1.0 and 0.7 o C during EC, by 1.5 and 1.2 o C during MC and by 1.8 and 1.7 o C during LC. • Wheat season-A variation in maximum temperature from the baseline (24.9 o C) is predicted under RCPs 4.5 and 6.0 respectively by-0.1 and-0.6 o C during EC, by 0.6 and 0.1 o C during MC and by 1.1 and 0.9 o C. Projected changes in minimum temperature • Rice season-An increase in minimum temperature from the baseline (24.0 o C) is predicted under RCPs 4.5 and 6.0 respectively by 4.1 and 3.8 o C during EC, by 4.7 and 4.4 o C during MC and by 4.9 and 5.0 o C during LC. • Maize season-An increase in minimum temperature from the baseline (25.7 o C) is predicted under RCPs 4.5 and 6.0 respectively by 2.6 and 2.4 o C during EC, by 3.2 and 3.0 o C during MC and by 3.5 and 3.6 o C during LC. • Wheat season-A variation in minimum temperature from the baseline (10.6 o C) is predicted under RCPs 4.5 and 6.0 respectively by-1.1 and-1.5 o C during EC, by-0.5 and-0.8 o C during MC and by-0.2 and 0.1 o C during LC. Projected changes in rainfall • Rice season-A decrease in rainfall from the baseline (556 mm) is predicted under RCPs 4.5 and 6.0 respectively by 137 and 148 mm during EC, by 94 and 107 mm during MC and by 88 and 48 mm during LC. 1 2 • Maize season-A decrease in rainfall from the baseline (524 mm) was observed under RCPs 4.5 and 6.0 respectively by 157 and 166 mm during EC, by 111 and 123 mm during MC and by 103 and 68 mm during LC. • Wheat season-A decrease in rainfall from the baseline (125 mm) was observed under RCPs 4.5 and 6.0 respectively by 67 and 67 mm during EC, by 67 and 68 mm during MC and by 72 and 66 mm during LC. Optimization of crop management practices for cereal crops in Punjab The yield of rice, maize and wheat were simulated using models (CERES-Rice, CERES-Maize and CERES-Wheat) with temperature and rainfall data predicted by the Ensemble model during the 60 years (2030-2090) time period. Later the crop models were used as a tool to identify/ fine tune agronomic practices for the sustaining high productivity of crops under two scenarios (RCP 4.5 and RCP 6.0) of climate change during three time periods (EC: 2030-50, MC: 2051-70 and LC: 2071-90) in the state. The salient findings of the study (Fig I, II and III) are given below: Optimized crop management practices for rice crop • The suitable transplanting window will be from 26 June to 16 July in Punjab. • The suitable rice cultivar for the state under future conditions would be PR126. • The increased nitrogen application @155 kg/ha during suitable transplanting window. • The agroclimatic zone V (Abohar) was found as not suitable for rice cultivation under future climatic scenarios. Optimized crop management practices for maize crop • The suitable sowing window will be from 14 to 16 June in agro-climatic zone II and III and 5-20 May in agro-climatic zone V (Faridkot) of Punjab. • The suitable maize cultivar for the state under future conditions would be PMH1. • The increased nitrogen application @145-185 kg/ha during suitable sowing window. • The agroclimatic zone IV (Bathinda) and V (Abohar) were found as not suitable for maize cultivation under future climatic scenarios. Optimized crop management practices for wheat crop • The suitable sowing window was observed from 24 to 29 November in agro-climatic zone II, III and V of Punjab under futuristic climatic scenarios. • The suitable wheat cultivars for the state under future conditions would be HD2967 and PBW725. 2 3 • The increased nitrogen application @ 150-230 kg/ha during suitable sowing window. • In agro-climatic zone IV (Bathinda) none of the sowing dates were found suitable for sustainable wheat cultivation under future climatic scenarios. Table I-Baseline and projected temperature and rainfall during the crop growth season in Punjab Crop Baseline period (2010-21) Early century (2030-50) Mid century (2051-70) Late century (2071-90) RCP 4.5 RCP 6.0 RCP 4.5 RCP 6.0 RCP 4.5 RCP 6.0 Maximum temperature (o C)
Assessment of impacts of climate change on rice and wheat in the Indo-Gangetic plains
2014
In this paper, the climate change scenarios of A2 and B2 for 2070-2100 time scale (denoted as 2080) for several key locations of India and its impact on rice and wheat crops based on regional climate model (PRECIS) were described. The PRECIS projects an increase in temperature over most parts of India especially in the IGP (Indo-Gangetic Plains), the region that presently experiences relatively low temperatures. Extreme high temperature episodes and rainfall intensity days are projected to become more frequent and the monsoon rainfall is also projected to increase. Rabi (mid Nov-March) season is likely to experience higher increase in temperature which could impact and hence become threat to the crops which really require low temperature for their growth. Climatic variability is also projected to increase in both A2 and B2 scenarios. All these projected changes are likely to reduce the wheat and rice yields in Indo-Gangetic plains of India. It is likely that there will be more numbe...
PRODUCTIVITY AND MANAGEMENT OF CEREALS UNDER PROJECTED CLIMATE IN PUNJAB
A simulation study was conducted to analyse the effect of projected changes in climatic parameters on yield of cereal (rice, maize and wheat) crops in different agro-climatic zones of Punjab state. The summary of projected changes in temperature and rainfall (Table I) along with baseline (2010-2021) values during the growing season of respective crops in the state as simulated by Ensemble model under two Representative Concentration Pathways (RCP 4.5 and RCP 6.0) and three time periods (EC : 2030-50, MC : 2051-70 and LC : 2071-90) are given below: Projected changes in maximum temperature • Rice season-An increase in maximum temperature from the baseline (35.4 o C) is predicted under RCPs 4.5 and 6.0 respectively by 1.3 and 1.2 o C during EC, by 1.8 and 1.7 o C during MC and by 2.2 and 2.0 o C during LC. • Maize season-An increase in maximum temperature from the baseline (35.2 o C) is predicted under RCPs 4.5 and 6.0 respectively by 1.0 and 0.7 o C during EC, by 1.5 and 1.2 o C during MC and by 1.8 and 1.7 o C during LC. • Wheat season-A variation in maximum temperature from the baseline (24.9 o C) is predicted under RCPs 4.5 and 6.0 respectively by-0.1 and-0.6 o C during EC, by 0.6 and 0.1 o C during MC and by 1.1 and 0.9 o C. Projected changes in minimum temperature • Rice season-An increase in minimum temperature from the baseline (24.0 o C) is predicted under RCPs 4.5 and 6.0 respectively by 4.1 and 3.8 o C during EC, by 4.7 and 4.4 o C during MC and by 4.9 and 5.0 o C during LC. • Maize season-An increase in minimum temperature from the baseline (25.7 o C) is predicted under RCPs 4.5 and 6.0 respectively by 2.6 and 2.4 o C during EC, by 3.2 and 3.0 o C during MC and by 3.5 and 3.6 o C during LC. • Wheat season-A variation in minimum temperature from the baseline (10.6 o C) is predicted under RCPs 4.5 and 6.0 respectively by-1.1 and-1.5 o C during EC, by-0.5 and-0.8 o C during MC and by-0.2 and 0.1 o C during LC. Projected changes in rainfall • Rice season-A decrease in rainfall from the baseline (556 mm) is predicted under RCPs 4.5 and 6.0 respectively by 137 and 148 mm during EC, by 94 and 107 mm during MC and by 88 and 48 mm during LC. 1 2 • Maize season-A decrease in rainfall from the baseline (524 mm) was observed under RCPs 4.5 and 6.0 respectively by 157 and 166 mm during EC, by 111 and 123 mm during MC and by 103 and 68 mm during LC. • Wheat season-A decrease in rainfall from the baseline (125 mm) was observed under RCPs 4.5 and 6.0 respectively by 67 and 67 mm during EC, by 67 and 68 mm during MC and by 72 and 66 mm during LC. Optimization of crop management practices for cereal crops in Punjab The yield of rice, maize and wheat were simulated using models (CERES-Rice, CERES-Maize and CERES-Wheat) with temperature and rainfall data predicted by the Ensemble model during the 60 years (2030-2090) time period. Later the crop models were used as a tool to identify/ fine tune agronomic practices for the sustaining high productivity of crops under two scenarios (RCP 4.5 and RCP 6.0) of climate change during three time periods (EC: 2030-50, MC: 2051-70 and LC: 2071-90) in the state. The salient findings of the study (Fig I, II and III) are given below: Optimized crop management practices for rice crop • The suitable transplanting window will be from 26 June to 16 July in Punjab. • The suitable rice cultivar for the state under future conditions would be PR126. • The increased nitrogen application @155 kg/ha during suitable transplanting window. • The agroclimatic zone V (Abohar) was found as not suitable for rice cultivation under future climatic scenarios. Optimized crop management practices for maize crop • The suitable sowing window will be from 14 to 16 June in agro-climatic zone II and III and 5-20 May in agro-climatic zone V (Faridkot) of Punjab. • The suitable maize cultivar for the state under future conditions would be PMH1. • The increased nitrogen application @145-185 kg/ha during suitable sowing window. • The agroclimatic zone IV (Bathinda) and V (Abohar) were found as not suitable for maize cultivation under future climatic scenarios. Optimized crop management practices for wheat crop • The suitable sowing window was observed from 24 to 29 November in agro-climatic zone II, III and V of Punjab under futuristic climatic scenarios. • The suitable wheat cultivars for the state under future conditions would be HD2967 and PBW725. 2 3 • The increased nitrogen application @ 150-230 kg/ha during suitable sowing window. • In agro-climatic zone IV (Bathinda) none of the sowing dates were found suitable for sustainable wheat cultivation under future climatic scenarios. Table I-Baseline and projected temperature and rainfall during the crop growth season in Punjab Crop Baseline period (2010-21) Early century (2030-50) Mid century (2051-70) Late century (2071-90) RCP 4.5 RCP 6.0 RCP 4.5 RCP 6.0 RCP 4.5 RCP 6.0 Maximum temperature (o C)
Research & Reviews: Journal of Agriculture and Allied Sciences, 2017
The study was carried on (i) obtaining HAD GEM2-ES climate change scenario RCP(Representative concentration Pathways) (8.5) data for Ludhiana location and minimizing its bias, (ii) simulation of its effect on irrigation requirements, crop yield, crop duration, and water-use efficiency of rice–wheat cropping system with DSSAT v 4.6.1 model. Model simulations predict reduction in irrigation requirements for rice crop and increase in irrigation requirements for wheat crop under RCP 8.5. Also reductions in crop yields in future associated with shortening of growth period due to increased temperature were predicted by the model. Increased rainfall in future would decrease irrigation water requirement of crops but would not offset the adverse effect of increased temperature. Although evapotranspiration would decrease towards end of the century, yet relatively more decrease in yield would lower water use efficiency
Rice-Wheat cropping system under changing climate Scenario: A review
International Journal of Chemical Studies
Climate change directly or indirectly influences all economics aspects, but agriculture is among the sectors which are most sensitive and inherently vulnerable to climate. The impacts of increased temperature from global warming and changes in rainfall patterns resulting from climate change are expected to reduce agricultural production and put further pressure on marginal land. Climate change and especially increase in ambient temperatures will reduce the yields of major cereal crops especially Ricewheat. Hence, to achieve our goals of food security, we need to emphasize the use and production of food crops that can withstand the ongoing changes to the climate, especially in the arid and semi-arid regions around the globe that are at a greater risk of food insecurity. There are key factors that significantly impact to mitigate stress conditions of the climate, i.e. short duration crop, value added weather services, genotype with higher per day yield potential, weather linked agricultural insurance etc.
Journal of Agrometeorology, 2017
The study focuses on simulating the effect of climate change under RCP4.5 scenario on irrigation requirements,crop yield, crop duration, and water -use efficiency of rice–wheat cropping system with DSSAT v 4.6.1 model at Ludhiana. Model simulations predict reduction in irrigation requirements for rice crop and increase in irrigation requirements for wheat crop under RCP 4.5 scenarios. Also reductions in crop yields in future associated with shortening of growth period due to increased temperature were predicted by the model. Increased rainfall in future would decrease irrigation water requirement of crops but would not offset the adverse effect of increased temperature. Although evapotranspiration would decrease towards end of the century, yet relatively more decrease in yield would lower water use efficiency.