Sterol regulation of human fatty acid synthase promoter I requires nuclear factor-Y- and Sp-1-binding sites (original) (raw)

Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes

Journal of lipid research, 2002

Recent studies on the in vivo roles of the sterol regulatory element binding protein (SREBP) family indicate that SREBP-2 is more specific to cholesterogenic gene expression whereas SREBP-1 targets lipogenic genes. To define the molecular mechanism involved in this differential regulation, luciferase-reporter gene assays were performed in HepG2 cells to compare the transactivities of nuclear SREBP-1a, -1c, and -2 on a battery of SREBP-target promoters containing sterol regulatory element (SRE), SRE-like, or E-box sequences. The results show first that cholesterogenic genes containing classic SREs in their promoters are strongly and efficiently activated by both SREBP-1a and SREBP-2, but not by SREBP-1c. Second, an E-box containing reporter gene is much less efficiently activated by SREBP-1a and -1c, and SREBP-2 was inactive in spite of its ability to bind to the E-box. Third, promoters of lipogenic enzymes containing variations of SRE (SRE-like sequences) are strongly activated by S...

New insights into cellular cholesterol acquisition: Promoter analysis of human HMGCR and SQLE, two key control enzymes in cholesterol synthesis

Biochimica et biophysica acta, 2017

The two control points of cholesterol synthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) and squalene monooxygenase (SQLE) are known targets of the transcription factor sterol-regulatory element binding protein-2 (SREBP-2). Yet the location of the sterol-regulatory elements (SREs) and cofactor binding sites, nuclear factor-Y (NF-Y) and specificity protein 1 (Sp1), have not been satisfactorily mapped in the human SQLE promoter, or at all in the human HMGCR promoter. We used luciferase reporter assays to screen the sterol-responsiveness of a library of predicted SRE, Sp1 and NF-Y site mutants and hence identify bone fide binding sites. We confirmed SREs via an electrophoretic mobility shift assay (EMSA) and ChIP-PCR. We identified two SREs in close proximity in both the human HMGCR and SQLE promoters, as well as one NF-Y site in HMGCR and two in SQLE. In addition, we found that HMGCR expression is highly activated only when SREBP-2 levels are very high, in contrast to ...

Sterol Regulatory Element-binding Protein-1 as a Key Transcription Factor for Nutritional Induction of Lipogenic Enzyme Genes

Journal of Biological Chemistry, 1999

To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were consistently low in both wildtype and SREBP-1 ؊/؊ mice. However, the absence of SREBP-1 severely impaired the marked induction of hepatic mRNAs of fatty acid synthetic genes, such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase, that was observed upon refeeding in the wild-type mice. Furthermore, the refeeding responses of other lipogenic enzymes, glycerol-3-phosphate acyltransferase, ATP citrate lyase, malic enzyme, glucose-6-phosphate dehydrogenase, and S14 mRNAs, were completely abolished in SREBP-1 ؊/؊ mice. In contrast, mRNA levels for cholesterol biosynthetic genes were elevated in the refed SREBP-1 ؊/؊ livers accompanied by an increase in nuclear SREBP-2 protein. When fed a high carbohydrate diet for 14 days, the mRNA levels for these lipogenic enzymes were also strikingly lower in SREBP-1 ؊/؊ mice than those in wild-type mice. These data demonstrate that SREBP-1 plays a crucial role in the induction of lipogenesis but not cholesterol biosynthesis in liver when excess energy by carbohydrates is consumed. The abbreviations used are: SREBP, sterol regulatory elementbinding protein; SRE, sterol regulatory element; ACC, acetyl-CoA carboxylase; FAS, fatty acid synthase; SCD, stearoyl-CoA desaturase; CYP4A2, cytochrome P-450 4A2; SCAP, SREBP cleavage activating protein; PPAR␣, peroxisome proliferator-activated receptor ␣.

Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells

Journal of Clinical Investigation, 1997

We have produced transgenic mice whose livers express a dominant positive NH 2 -terminal fragment of sterol regulatory element binding protein-1c (SREBP-1c). Unlike fulllength SREBP-1c, the NH 2 -terminal fragment enters the nucleus without a requirement for proteolytic release from cell membranes, and hence it is immune to downregulation by sterols. We compared SREBP-1c transgenic mice with a line of transgenic mice that produces an equal amount of the NH 2 -terminal fragment of SREBP-1a. SREBP-1a and -1c are alternate transcripts from a single gene that differ in the first exon, which encodes part of an acidic activation domain. The 1a protein contains a long activation domain with 12 negatively charged amino acids, whereas the 1c protein contains a short activation domain with only 6 such amino acids. As previously reported, livers of the SREBP-1a transgenic mice were massively enlarged, owing to accumulation of triglycerides and cholesterol. SREBP-1c transgenic livers were only slightly enlarged with only a moderate increase in triglycerides, but not cholesterol. The mRNAs for the LDL receptor and several cholesterol biosynthetic enzymes were elevated in SREBP-1a transgenic mice, but not in 1c transgenic mice. The mRNAs for fatty acid synthase and acetyl CoA carboxylase were elevated 9-and 16-fold in 1a animals, but only 2-and 4-fold in 1c animals. Experiments with transfected cells confirmed that SREBP-1c is a much weaker activator of transcription than SREBP-1a when both are expressed at levels approximating those found in nontransfected cells. SREBP-1c became a strong activator only when expressed at supraphysiologic levels. We conclude that SREBP-1a is the most active form of SREBP-1 and that SREBP-1c may be produced when cells require a lower rate of transcription of genes regulating cholesterol and fatty acid metabolism. ( J. Clin. Invest. 1997. 99: 846-854.) Key words: SREBP-1 • alternative splicing • cholesterol • fatty acids • transgenic mice

Promoter analysis of the mouse sterol regulatory element-binding protein-1c gene

The Journal of biological chemistry, 2000

Recent data suggest that sterol regulatory-binding protein (SREBP)-1c plays a key role in the transcriptional regulation of different lipogenic genes mediating lipid synthesis as a key regulator of fuel metabolism. SREBP-1c regulates its downstream genes by changing its own mRNA level, which led us to sequence and analyze the promoter region of the mouse SREBP-1c gene. A cluster of putative binding sites of several transcription factors composed of an NF-Y site, an E-box, a sterol-regulatory element 3, and an Sp1 site were located at -90 base pairs of the SREBP-1c promoter. Luciferase reporter gene assays indicated that this SRE complex is essential to the basal promoter activity and confers responsiveness to activation by nuclear SREBPs. Deletion and mutation analyses suggest that the NF-Y site and SRE3 in the SRE complex are responsible for SREBP activation, although the other sites were also involved in the basal activity. Gel mobility shift assays demonstrate that SREBP-1 binds ...

Unsaturated Fatty Acids Inhibit Sterol Regulatory Element-Dependent Gene Expression: A Potential Mechanism Contributing to Hypertriglyceridemia

C holesterol and free fatty acids interact at a number of levels in pathways that regulate human lipid metabolism, cellular membrane structure, and function. As examples, both cholesterol and free fatty acids are important substrates for the acyl CoA-cholesterol acyltransferase (ACAT) reaction leading to cell storage of sterol esters. Fatty acids and cholesterol independently regulate expression of the LDL receptor (1). Whereas cholesterol acts to decrease fluidity of cellular membranes, polyunsaturated fatty acids incorporated into membrane phospholipids increase fluidity.

Cholesterol feeding reduces nuclear forms of sterol regulatory element binding proteins in hamster liver

Proceedings of the National Academy of Sciences, 1997

Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH 2 -terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH 2terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The highcholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70 -90% reduction in mRNAs encoding 3-hydroxy-3methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.

Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2

Journal of Clinical Investigation, 1998

We produced transgenic mice that express a dominant-positive truncated form of sterol regulatory element-binding protein-2 (SREBP-2) in liver and adipose tissue. The encoded protein lacks the membrane-binding and COOH-terminal regulatory domains, and it is therefore not susceptible to negative regulation by cholesterol. Livers from the transgenic mice showed increases in mRNAs encoding multiple enzymes of cholesterol biosynthesis, the LDL receptor, and fatty acid biosynthesis. The elevations in mRNA for 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase were especially marked (13-fold and 75-fold, respectively). As a result, the transgenic livers showed a 28-fold increase in the rate of cholesterol synthesis and a lesser fourfold increase in fatty acid synthesis, as measured by intraperitoneal injection of [ 3 H]water. These results contrast with previously reported effects of dominant-positive SREBP-1a, which activated fatty acid synthesis more than cholesterol synthesis. In adipose tissue of the SREBP-2 transgenics, the mRNAs for cholesterol biosynthetic enzymes were elevated, but the mRNAs for fatty acid biosynthetic enzymes were not. We conclude that SREBP-2 is a relatively selective activator of cholesterol synthesis, as opposed to fatty acid synthesis, in liver and adipose tissue of mice. (