Endocrine and neuroendocrine signals of energy stores: view from the chair (original) (raw)
Related papers
The Role of Leptin in the Regulation of Energy Balance and Adiposity
Journal of Neuroendocrinology, 2008
Since its discovery, leptin (a 167-amino acid product of the OB gene) has quickly moved to the forefront as an important hormone for regulation of energy balance. It closes a feedback loop from adipose tissue to hypothalamic neuropeptide-containing neural circuitry involved in regulation of food intake and neuroendocrine/autonomic out¯ow. While increased central leptin signalling reduces adiposity via a reduction in food intake, it also has remarkable metabolic effects that promote leanness, independent of food intake. These include: (i) increased energy expenditure, (ii) in-place degradation of fat, and (iii) increased thermogenesis. Hypothalamic neurones that synthesize corticotropin releasing hormone and melanocortins (i.e. a-melanocyte-stimulating hormone and agouti-related protein) are likely effector pathways that mediate the anorexigenic and metabolic effects of leptin. Activation of sympathetic out¯ow (via neuropeptidergic effector pathways of central leptin) to a number of tissues that store fat might be an important mechanism through which these peripheral metabolic effects are elicited. It is proposed that these peripheral metabolic effects contribute to the satiating properties of leptin.
Neuroendocrinology of Energy Balance
Endocrinology, 2019
In the past decades, the spiraling obesity epidemic has renewed the interest of basic scientists in the control of hunger and satiety, food intake and energy expenditure, and body weight regulation by the central nervous system. The discovery of the adipose-derived satiety hormone, leptin, in 1994 greatly advanced the neuroscience of obesity by enabling detection and characterization of thelargely hypothalamicneurocircuits that underpin feeding behavior and energy balance regulation. A number of circulating factors that affect the energy
J Neuroendocrinol, 2008
Since its discovery, leptin (a 167-amino acid product of the OB gene) has quickly moved to the forefront as an important hormone for regulation of energy balance. It closes a feedback loop from adipose tissue to hypothalamic neuropeptide-containing neural circuitry involved in regulation of food intake and neuroendocrine/autonomic out¯ow. While increased central leptin signalling reduces adiposity via a reduction in food intake, it also has remarkable metabolic effects that promote leanness, independent of food intake. These include: (i) increased energy expenditure, (ii) in-place degradation of fat, and (iii) increased thermogenesis. Hypothalamic neurones that synthesize corticotropin releasing hormone and melanocortins (i.e. a-melanocyte-stimulating hormone and agouti-related protein) are likely effector pathways that mediate the anorexigenic and metabolic effects of leptin. Activation of sympathetic out¯ow (via neuropeptidergic effector pathways of central leptin) to a number of tissues that store fat might be an important mechanism through which these peripheral metabolic effects are elicited. It is proposed that these peripheral metabolic effects contribute to the satiating properties of leptin.
Sixteen years and counting: an update on leptin in energy balance
The Journal of clinical investigation, 2011
Cloned in 1994, the ob gene encodes the protein hormone leptin, which is produced and secreted by white adipose tissue. Since its discovery, leptin has been found to have profound effects on behavior, metabolic rate, endocrine axes, and glucose fluxes. Leptin deficiency in mice and humans causes morbid obesity, diabetes, and various neuroendocrine anomalies, and replacement leads to decreased food intake, normalized glucose homeostasis, and increased energy expenditure. Here, we provide an update on the most current understanding of leptin-sensitive neural pathways in terms of both anatomical organization and physiological roles.
Neuroscience and biobehavioural reviews, 2001
In small rodents there is compelling evidence of a lipostatic system of body mass regulation in which peripheral signals of energy storage are decoded in the hypothalamus. The ability of small mammals to defend an appropriate mass against imposed energy imbalance has implicated hypothalamic neuroendocrine systems in body mass regulation. The effect of the neuropeptide systems involved in this regulation is primarily compensatory. However, small mammals can also effect changes in the level of body mass that they will defend, as exempli®ed by seasonal species. Regulatory control over fat mass may be relatively loose in humans; the sizes of long-term storage depots may not themselves be regulated, but rather may be a consequence of temporal variations in the matching of supply and demand. Whether food intake is regulated to match energy demand, or to match demand and to regulate storage, it is clear that physiological defects or genetic variation in hypothalamic and peripheral feedback systems will have profound implications for fat storage. Study of mechanisms implicated in energy homeostasis in laboratory rodents is likely to continue to identify targets for pharmacological manipulation in the management of human obesity. q
Neuroendocrinology of Adipose Tissue and Gut-Brain Axis
Advances in neurobiology, 2017
Food intake and energy expenditure are closely regulated by several mechanisms which involve peripheral organs and nervous system, in order to maintain energy homeostasis.Short-term and long-term signals express the size and composition of ingested nutrients and the amount of body fat, respectively. Ingested nutrients trigger mechanical forces and gastrointestinal peptide secretion which provide signals to the brain through neuronal and endocrine pathways. Pancreatic hormones also play a role in energy balance exerting a short-acting control regulating the start, end, and composition of a meal. In addition, insulin and leptin derived from adipose tissue are involved in long-acting adiposity signals and regulate body weigh as well as the amount of energy stored as fat over time.This chapter focuses on the gastrointestinal-, pancreatic-, and adipose tissue-derived signals which are integrated in selective orexigenic and anorexigenic brain areas that, in turn, regulate food intake, ene...
Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues
International Journal of Molecular Sciences, 2019
Despite tremendous research efforts to identify regulatory factors that control energy metabolism, the prevalence of obesity has been continuously rising, with nearly 40% of US adults being obese. Interactions between secretory factors from adipose tissues and the nervous system innervating adipose tissues play key roles in maintaining energy metabolism and promoting survival in response to metabolic challenges. It is currently accepted that there are three types of adipose tissues, white (WAT), brown (BAT), and beige (BeAT), all of which play essential roles in maintaining energy homeostasis. WAT mainly stores energy under positive energy balance, while it releases fuels under negative energy balance. Thermogenic BAT and BeAT dissipate energy as heat under cold exposure to maintain body temperature. Adipose tissues require neural and endocrine communication with the brain. A number of WAT adipokines and BAT batokines interact with the neural circuits extending from the brain to coo...