0$, on a two-dimensional Riemannian manifold. We assume that there is no electric field. We suppose that the minimal value $b_0$ of the magnetic">

Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic SCHR ¨ Odinger Operator: The Case of Discrete Wells (original) (raw)

Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic Schrödinger Operator II: The Case of Degenerate Wells

Yuri Kordyukov

Communications in Partial Differential Equations, 2012

View PDFchevron_right

Semiclassical asymptotics and gaps in the spectra of periodic Schrödinger operators with magnetic wells

Yuri Kordyukov

Transactions of the American Mathematical Society, 2008

View PDFchevron_right

Semiclassical analysis of Schrödinger operators with magnetic wells

Yuri Kordyukov

Contemporary Mathematics, 2009

View PDFchevron_right

Accurate Semiclassical Spectral Asymptotics for a Two-Dimensional Magnetic Schrödinger Operator

Yuri Kordyukov

Annales Henri Poincaré, 2014

View PDFchevron_right

Semiclassical Spectral Asymptotics for a Magnetic Schrödinger Operator with Non-vanishing Magnetic Field

Yuri Kordyukov

Trends in Mathematics, 2014

View PDFchevron_right

Spectral Gaps for Periodic SCHR�DINGER Operators with Hypersurface Magnetic Wells

Yuri Kordyukov

2008

View PDFchevron_right

Spectral Gaps for Periodic Schr�dinger Operators with Strong Magnetic Fields

Yuri Kordyukov

Communications in Mathematical Physics, 2005

View PDFchevron_right

Eigenvalue estimates for a three-dimensional magnetic Schr\"odinger operator

Yuri Kordyukov

Asymptotic Analysis

View PDFchevron_right

Spectral properties of a limit-periodic Schr\"odinger operator in dimension two

Yulia Karpeshina

arXiv (Cornell University), 2010

View PDFchevron_right

Dirichlet and Neumann eigenvalues for half-plane magnetic Hamiltonians

Pablo Miranda, Georgi Raikov

Reviews in Mathematical Physics, 2014

View PDFchevron_right

Asymptotics of spectral gaps of quasi-periodic Schrödinger operators

Martin Leguil

arXiv: Dynamical Systems, 2017

View PDFchevron_right

On the Spectrum of Two-Dimensional Schr¨ odinger Operators with Spherically Symmetric, Radially Periodic Magnetic Fields ?

Georg Hoever

Commun Math Phys, 1997

View PDFchevron_right

Strong magnetic fields, Dirichlet boundaries, and spectral gaps

Ira Herbst

Communications in Mathematical Physics, 1995

View PDFchevron_right

On the heat trace of the magnetic Schrodinger operators on the hyperbolic plane

Yuzuru Inahama

View PDFchevron_right

Spectral properties of a limit-periodic Schr

Yulia Karpeshina

2010

View PDFchevron_right

Spectral asymptotics for magnetic Schrödinger operators with rapidly decreasing electric potentials

Georgi Raikov

Comptes Rendus Mathematique, 2002

View PDFchevron_right

QUASI-CLASSICAL VERSUS NON-CLASSICAL SPECTRAL ASYMPTOTICS FOR MAGNETIC SCHRÖDINGER OPERATORS WITH DECREASING ELECTRIC POTENTIALS

Georgi Raikov

Reviews in Mathematical Physics, 2002

View PDFchevron_right

Periodic magnetic Schr�dinger operators: Spectral gaps and tunneling effect

Yuri Kordyukov

Proc Steklov Inst Math, 2008

View PDFchevron_right

Asymptotic Analysis of the Periodic Schrodinger Operator

Oktay Veliev

arXiv: Mathematical Physics, 2005

View PDFchevron_right

Schr\"odinger operator with periodic plus compactly supported potentials on the half-line

Evgeny Korotyaev

2007

View PDFchevron_right

Eigenvalue Asymptotics for Even-Dimensional Perturbed Dirac and Schrödinger Operators with Constant Magnetic Fields

Grigori Rozenblioum

View PDFchevron_right

Exponential decay of the size of spectral gaps for quasiperiodic Schrödinger operators

Martin Leguil

arXiv: Dynamical Systems, 2016

View PDFchevron_right

Exponential bounds and semi-finiteness of point spectrum forN-body Schr�dinger operators

Peter Perry

Communications in Mathematical Physics, 1984

View PDFchevron_right

Kato’s inequality and asymptotic spectral properties for discrete magnetic Laplacians

Józef Dodziuk

Contemporary Mathematics, 2006

View PDFchevron_right

On the Spectrum¶of Two-Dimensional Schrödinger Operators¶with Spherically Symmetric, Radially Periodic¶Magnetic Fields

Georg Hoever

Communications in Mathematical Physics, 1997

View PDFchevron_right

On the spectral estimates for the Schr\

Grigori Rozenblioum

2009

View PDFchevron_right

Threshold singularities of the spectral shift function for a half-plane magnetic Hamiltonian

Pablo Miranda

Journal of Functional Analysis, 2018

View PDFchevron_right

On spectral asymptotic for the second-derivative operators

Yahea Hashem, Ehsan Hameed

Journal of Physics: Conference Series, IOP Publishing, 2020

View PDFchevron_right

Spectral Properties of Limit-Periodic Schr\"odinger Operators

Zheng Gan

2009

View PDFchevron_right

1D Schr\"odinger operator with periodic plus compactly supported potentials

Evgeny Korotyaev

2009

View PDFchevron_right

Spectral Properties of a Magnetic Quantum Hamiltonian on a Strip

Philippe Briet, Georgi Raikov

Asymptotic Analysis

View PDFchevron_right

On the spectral estimates for Schr\

Grigori Rozenblioum

2010

View PDFchevron_right

Spectral asymptotics via the semiclassical Birkhoff normal form

Vu Tran Ngo

Duke Mathematical Journal, 2008

View PDFchevron_right

The Asymptotics of Spectral Gaps of a 1D Dirac Operator with Cosine Potential

Boris Mityagin

Letters in Mathematical Physics, 2000

View PDFchevron_right

Asymptotics of spectral quantities of Schr\

Peter Topalov

2011

View PDFchevron_right