Removal of vegetal yolk causes dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish (original) (raw)
Related papers
Dino and Mercedes, Two Genes Regulating Dorsal Development in the Zebrafish Embryo
Development, 1996
We describe two genes, dino and mercedes, which are required for the organization of the zebrafish body plan. In dino mutant embryos, the tail is enlarged at the expense of the head and the anterior region of the trunk. The altered expression patterns of various marker genes reveal that, with the exception of the dorsal most marginal zone, all regions of the early dino mutant embryo acquire more ventral fates. These alterations are already apparent before the onset of gastrulation. mercedes mutant embryos show a similar but weaker phenotype, suggesting a role in the same patterning processes. The phenotypes suggests that dino and mercedes are required for the establishment of dorsal fates in both the marginal and the animal zone of the early gastrula embryo. Their function in the patterning of the ventrolateral mesoderm and the induction of the neuroectoderm is similar to the function of the Spemann organizer in the amphibian embryo.
Expression of the anti-dorsalizing morphogenetic protein gene in the zebrafish embryo
Development Genes and Evolution, 2001
The BMP3 related anti-dorsalizing morphogenetic protein (ADMP) has been proposed to function in the organizer of chick and Xenopus embryos. We report here the cloning and expression pattern of a zebrafish admp gene. The gene is expressed in involuting cells of the embryonic shield, but not in the noninvoluting forerunner cells. During gastrulation, admp transcripts are detected in the posterior prechordal plate, in the notochord primordium and in cells of the dorsal blastoderm margin. Expression is also detectable in the neuroectoderm overlying the posterior prechordal plate. Expression persists in the tail bud until the end of somitogenesis while expression in other areas disappears during early somitogenesis stages.
Development, 1996
We identified 6 genes that are essential for specifying ventral regions of the early zebrafish embryo. Mutations in these genes cause an expansion of structures normally derived from dorsal-lateral regions of the blastula at the expense of ventrally derived structures. A series of phenotypes of varied strengths is observed with different alleles of these mutants. The weakest phenotype is a reduction in the ventral tail fin, observed as a dominant phenotype of swirl, piggytail, and somitabun and a recessive phenotype of mini fin, lost-a-fin and some piggytail alleles. With increasing phenotypic strength, the blood and pronephric anlagen are also reduced or absent, while the paraxial mesoderm and anterior neuroectoderm is progressively expanded. In the strong phenotypes, displayed by homozygous embryos of snailhouse, swirl and somitabun, the somites circle around the embryo and the midbrain region is expanded laterally. Several mutations in this group of genes are semidominant as well...
Stages of embryonic development of the zebrafish
Developmental Dynamics, 1995
We describe a series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad periods of embryogenesis-the zygote, cleavage, blastula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the changing spectrum of major developmental processes that occur during the first 3 days after fertilization, and we review some of what is known about morphogenesis and other significant events that occur during each of the periods. Stages subdivide the periods. Stages are named, not numbered as in most other series, providing for flexibility and continued evolution of the staging series as we learn more about development in this species. The stages, and their names, are based on morphological features, generally readily identified by examination of the live embryo with the dissecting stereomicroscope. The descriptions also fully utilize the optical transparancy of the live embryo, which provides for visibility of even very deep structures when the embryo is examined with the compound microscope and Nomarski interference contrast illumination. Photomicrographs and composite camera lucida line drawings characterize the stages pictorially. Other figures chart the development of distinctive acters used as staging aid signposts. 0 1995 Wiley-Liss, Inc.
Embryological manipulations in zebrafish
2011
Due to the powerful combination of genetic and embryological techniques, the teleost fish Danio rerio has emerged in the last decade as an important model organism for the study of embryonic development. It is relatively easy to inject material such as mRNA or synthetic oligonucleotides to reduce or increase the expression of a gene product. Changes in gene expression can be analyzed at the level of mRNA, by whole-mount in situ hybridization, or at the level of protein, by immunofluorescence. It is also possible to quantitatively analyze protein levels by Western and immunoprecipitation. Cell behavior can be analyzed in detail by cell transplantation and by fate mapping. Because a large number of mutations have been identified in recent years, these methods can be applied in a variety of contexts to provide a deep understanding of gene function that is often more difficult to achieve in other vertebrate model systems.
Dynamic microtubules and specification of the zebrafish embryonic axis
Current Biology, 1997
Background: The zebrafish is emerging as an important genetic system for the study of vertebrate development, and many zygotic mutations affecting embryogenesis have been isolated. The early events in development are under the control of maternal genes but are relatively unexplored. Here, the process of axis specification is investigated.
Cyclops-independent floor plate differentiation in zebrafish embryos
Developmental Dynamics, 2003
In zebrafish, development of the ventral neural tube depends on the Nodal-related signal Cyclops (Cyc). One-day-old cyc mutant embryos lack the medial floor plate (MFP). We show here that cells expressing MFP marker genes differentiate gradually in cyc mutant embryos in a delayed manner during the second day of development. This late differentiation is restricted to the hindbrain and spinal cord and depends on an intact Hedgehog (Hh) signalling pathway. Cells expressing MFP marker genes in cyc mutant embryos appear to be derived from lateral floor plate (LFP) cells as they coexpress LFP and MFP marker genes. This finding suggests that the correct temporal development of the MFP is required for the distinction of LFP and MFP cells in wild-type embryos. Developmental Dynamics 226: 59 -66, 2003.
Development, 1997
The zebrafish locus one-eyed pinhead (oep) is essential for the formation of anterior axial mesoderm, endoderm and ventral neuroectoderm. At the beginning of gastrulation anterior axial mesoderm cells form the prechordal plate and express goosecoid (gsc) in wild-type embryos. In oep mutants the prechordal plate does not form and gsc expression is not maintained. Exposure to lithium, a dorsalizing agent, leads to the ectopic induction and maintenance of gsc expression in wild-type embryos. Lithium treatment of oep mutants still leads to ectopic gsc induction but not maintenance, suggesting that oep acts downstream of inducers of dorsal mesoderm. In genetic mosaics, wild-type cells are capable of forming anterior axial mesoderm in oep embryos, suggesting that oep is required in prospective anterior axial mesoderm cells before gastrulation. The oep gene is also essential for endoderm formation and the early development of ventral neuroectoderm, including the floor plate. The loss of endoderm is already manifest during gastrulation by the absence of axial-expressing cells in the hypoblast of oep mutants. These findings suggest that oep is also required in lateral and ventral regions of the gastrula margin. The sonic hedgehog (shh).gene is expressed in the notochord of oep animals. Therefore, the impaired floor plate development in oep mutants is not caused by the absence of the floor plate inducer shh. This suggests that oep is required downstream or in parallel to shh signaling. The ventral region of the forebrain is also absent in oep mutants, leading to severe cyclopia. In contrast, anterior-posterior brain patterning appears largely unaffected, suggesting that underlying prechordal plate is not required for anterior-posterior pattern formation but might be involved in dorsoventral brain patterning. To test if oep has a wider, partially redundant role, we constructed double mutants with two other zebrafish loci essential for patterning during gastrulation. Double mutants with floating head, the zebrafish Xnot homologue, display enhanced floor plate and adaxial muscle phenotypes. Double mutants with no tail (ntl), the zebrafish homologue of the mouse Brachyury locus, display severe defects in midline and mesoderm formation including absence of most of the somitic mesoderm. These results reveal a redundant function of oep and ntl in mesoderm formation. Our data suggest that both oep and ntl act in the blastoderm margin to specify mesendodermal cell fates.