Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli (original) (raw)

Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli

Journal of Bacteriology, 2002

The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13 C labeling experiments with [U-13 C 6 ]glucose in glucoseor ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.

Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli

Journal of Bacteriology, 2002

The intracellular carbon flux distribution in wild-type and pyruvate kinase-deficient Escherichia coli was estimated using biosynthetically directed fractional 13 C labeling experiments with [U-13 C 6 ]glucose in glucoseor ammonia-limited chemostats, two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, and a comprehensive isotopomer model. The general response to disruption of both pyruvate kinase isoenzymes in E. coli was a local flux rerouting via the combined reactions of phosphoenolpyruvate (PEP) carboxylase and malic enzyme. Responses in the pentose phosphate pathway and the tricarboxylic acid cycle were strongly dependent on the environmental conditions. In addition, high futile cycling activity via the gluconeogenic PEP carboxykinase was identified at a low dilution rate in glucose-limited chemostat culture of pyruvate kinase-deficient E. coli, with a turnover that is comparable to the specific glucose uptake rate. Furthermore, flux analysis in mutant cultures indicates that glucose uptake in E. coli is not catalyzed exclusively by the phosphotransferase system in glucose-limited cultures at a low dilution rate. Reliability of the flux estimates thus obtained was verified by statistical error analysis and by comparison to intracellular carbon flux ratios that were independently calculated from the same NMR data by metabolic flux ratio analysis.

Acetate Metabolism in Escherichia coli Strains Lacking Phosphoenolpyruvate: Carbohydrate Phosphotransferase System; Evidence of Carbon Recycling Strategies and Futile Cycles

Microbial Physiology, 2008

The ptsHIcrr operon was deleted from Escherichia coli wild-type JM101 to generate strain PB11 (PTS–). In a mutant derived from PB11 that partially recovered its growth capacity on glucose by an adaptive evolution process (PB12, PTS–Glc+), part of the phosphoenolpyruvate not used in glucose transport has been utilized for the synthesis of aromatic compounds. In this report, it is shown that on acetate as a carbon source, PB11 displayed a specific growth rate (μ) higher than PB12 (0.21 and 0.13 h–1, respectively) while JM101 had a μ of 0.28 h–1. To understand these growth differences on acetate, we compared the expression profiles of central metabolic genes by RT-PCR analysis. Obtained data revealed that some gluconeogenic genes were downregulated in both PTS– strains as compared to JM101, while most glycolytic genes were upregulated in PB12 in contrast to PB11 and JM101. Furthermore, inactivation of gluconeogenic genes, like ppsA, sfcA, and maeB,and poxB gene that codes for pyruvate ...

Effect of a pyruvate kinase ( pykF -gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli

FEMS Microbiology Letters, 2004

The metabolic regulation of Escherichia coli lacking a functional pykF gene was investigated based on gene expressions, enzyme activities, intracellular metabolite concentrations and the metabolic flux distribution obtained based on 13 C-labeling experiments. RT-PCR revealed that the glycolytic genes such as glk, pgi, pfkA and tpiA were down regulated, that ppc, pckA, maeB and mdh genes were strongly up-regulated, and that the oxidative pentose phosphate pathway genes such as zwf and gnd were significantly upregulated in the pykF mutant. The catabolite repressor/activator gene fruR was up-regulated in the pykF mutant, but the adenylate cyclase gene cyaA was down-regulated indicating a decreased rate of glucose uptake. This was also ascertained by the degradation of ptsG mRNA, the gene for which was down-regulated in the pykF mutant. In general, the changes in enzyme activities more or less correlated with ratios of gene expression, while the changes in metabolic fluxes did not correlate with enzyme activities. For example, high flux ratios were obtained through the oxidative pentose phosphate pathway due to an increased concentration of glucose-6phosphate rather than to favorable enzyme activity ratios. In contrast, due to decreased availability of pyruvate (and acetyl coenzyme A) in the pykF mutant compared with the wild type, low flux ratios were found through lactate and acetate forming pathways.

Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism

mBio, 2012

Two branches of the phosphoenolpyruvate-phosphotransferase system (PTS) operate in the soil bacterium Pseudomonas putida KT2440. One branch encompasses a complete set of enzymes for fructose intake (PTS(Fru)), while the other (N-related PTS, or PTS(Ntr)) controls various cellular functions unrelated to the transport of carbohydrates. The potential of these two systems for regulating central carbon catabolism has been investigated by measuring the metabolic fluxes of isogenic strains bearing nonpolar mutations in PTS(Fru) or PTS(Ntr) genes and grown on either fructose (a PTS substrate) or glucose, the transport of which is not governed by the PTS in this bacterium. The flow of carbon from each sugar was distinctly split between the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways in a ratio that was maintained in each of the PTS mutants examined. However, strains lacking PtsN (EIIA(Ntr)) displayed significantly higher fluxes in the reactions of the pyruvate sh...

Microbial Cell Factories Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

Background: Escherichia coli strains lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS) are capable of coutilizing glucose and other carbon sources due to the absence of catabolite repression by glucose. In these strains, the lack of this important regulatory and transport system allows the coexistence of glycolytic and gluconeogenic pathways. Strains lacking PTS have been constructed with the goal of canalizing part of the phosphoenolpyruvate (PEP) not consumed in glucose transport to the aromatic pathway. The deletion of the ptsHIcrr operon inactivates PTS causing poor growth on this sugar; nonetheless, fast growing mutants on glucose have been isolated (PB12 strain). However, there are no reported studies concerning the growth potential of a PTS-strain in mixtures of different carbon sources to enhance the production of aromatics compounds.

Identification of critical residues in the bifunctional phosphoenolpyruvate synthetase kinase/phosphotransferase of Escherichia coli

In bacteria, phosphoenolpyruvate synthetase (EC 2.7.9.2) catalyses the conversion of pyruvate to phosphoenolpyruvate during gluconeogenesis. The enzyme is regulated by an unusual bifunctional serine/threonine kinase-phosphotransferase (PEP synthetase regulatory protein) that involves an ADP-dependent phosphorylation and a Pi-dependent dephosphorylation mechanism. Site-directed mutagenesis studies have revealed that two separate regions of Escherichia coli PEP synthetase regulatory protein are involved in catalysis; a central P-loop that is probably critical for the binding of the protein substrate (PEP synthetase) and a C-terminal region that interacts with the P-loop and is required to bind ADP and Pi. In addition, our findings are consistent with the P-loop and the C-terminal region responsible for ADP and Pi binding being juxtaposed in the functioning enzyme. Given the high degree of sequence similarity between bacterial PEP synthetase regulatory protein and plant pyruvate, ortho...

The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli

The Journal of biological chemistry, 2017

The histidine-phosphorylatable phosphocarrier protein (HPr) is an essential component of the sugar-transporting phosphotransferase system (PTS) in many bacteria. Recent interactome findings suggested that HPr interacts with several carbohydrate-metabolizing enzymes, but whether HPr plays a regulatory role was unclear. Here, we provide evidence that HPr interacts with a large number of proteins in Escherichia coli We demonstrate HPr-dependent allosteric regulation of the activities of pyruvate kinase (PykF, but not PykA), phosphofructokinase (PfkB, but not PfkA), glucosamine-6-phosphate deaminase (NagB), and adenylate kinase (Adk). HPr is either phosphorylated on a histidyl residue (HPr-P) or non-phosphorylated (HPr). PykF is activated only by non-phosphorylated HPr, which decreases the PykF Khalf for phosphoenolpyruvate by 10-fold (from 3.5 to 0.36 mm), thus influencing glycolysis. PfkB activation by HPr, but not by HPr-P, resulted from a decrease in the Khalf for fructose-6-P, whic...

Metabolic Analysis of Wild-type Escherichia coli and a Pyruvate Dehydrogenase Complex (PDHC)-deficient Derivative Reveals the Role of PDHC in the Fermentative Metabolism of Glucose

Journal of Biological Chemistry, 2010

Pyruvate is located at a metabolic junction of assimilatory and dissimilatory pathways and represents a switch point between respiratory and fermentative metabolism. In Escherichia coli, the pyruvate dehydrogenase complex (PDHC) and pyruvate formate-lyase are considered the primary routes of pyruvate conversion to acetyl-CoA for aerobic respiration and anaerobic fermentation, respectively. During glucose fermentation, the in vivo activity of PDHC has been reported as either very low or undetectable, and the role of this enzyme remains unknown. In this study, a comprehensive characterization of wild-type E. coli MG1655 and a PDHC-deficient derivative (Pdh) led to the identification of the role of PDHC in the anaerobic fermentation of glucose. The metabolism of these strains was investigated by using a mixture of 13 C-labeled and-unlabeled glucose followed by the analysis of the labeling pattern in protein-bound amino acids via two-dimensional 13 C, 1 H NMR spectroscopy. Metabolite balancing, biosynthetic 13 C labeling of proteinogenic amino acids, and isotopomer balancing all indicated a large increase in the flux of the oxidative branch of the pentose phosphate pathway (ox-PPP) in response to the PDHC deficiency. Because both ox-PPP and PDHC generate CO 2 and the calculated CO 2 evolution rate was significantly reduced in Pdh, it was hypothesized that the role of PDHC is to provide CO 2 for cell growth. The similarly negative impact of either PDHC or ox-PPP deficiencies, and an even more pronounced impairment of cell growth in a strain lacking both ox-PPP and PDHC, provided further support for this hypothesis. The three strains exhibited similar phenotypes in the presence of an external source of CO 2 , thus confirming the role of PDHC. Activation of formate hydrogen-lyase (which converts formate to CO 2 and H 2) rendered the PDHC deficiency silent, but its negative impact reappeared in a strain lacking both PDHC and formate hydrogen-lyase. A stoichiometric analysis of CO 2 generation via PDHC and ox-PPP revealed that the PDHC route is more carbon-and energy-efficient, in agreement with its beneficial role in cell growth.