Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle (original) (raw)

The Efficiency of Homologous Recombination and Non-Homologous End Joining Systems in Repairing Double-Strand Breaks during Cell Cycle Progression

PLoS ONE, 2013

This study investigated the efficiency of Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair systems in rejoining DNA double-strand breaks (DSB) induced in CCD-34Lu cells by different c-ray doses. The kinetics of DNA repair was assessed by analyzing the fluorescence decrease of c-H2AX foci measured by SOID (Sum Of Integrated Density) parameter and counting foci number in the time-interval 0.5-24 hours after irradiation. Comparison of the two methods showed that the SOID parameter was useful in determining the amount and the persistence of DNA damage signal after exposure to high or low doses of ionizing radiation. The efficiency of DSB rejoining during the cell cycle was assessed by distinguishing G1, S, and G2 phase cells on the basis of nuclear fluorescence of the CENP-F protein. Six hours after irradiation, c-H2AX foci resolution was higher in G2 compared to G1 cells in which both NHEJ and HR can cooperate. The rejoining of c-H2AX foci in G2 phase cells was, moreover, decreased by RI-1, the chemical inhibitor of HR, demonstrating that homologous recombination is at work early after irradiation. The relevance of HR in DSB repair was assessed in DNA-PKdeficient M059J cells and in CCD-34Lu treated with the DNA-PKcs inhibitor, NU7026. In both conditions, the kinetics of c-H2AX demonstrated that DSBs repair was markedly affected when NHEJ was absent or impaired, even in G2 phase cells in which HR should be at work. The recruitment of RAD51 at DSB sites was, moreover, delayed in M059J and in NU7026 treated-CCD-34Lu, with respect to DNA-PKcs proficient cells and continued for 24 hours despite the decrease in DNA repair. The impairment of NHEJ affected the efficiency of the HR system and significantly decreased cell survival after ionizing radiation, confirming that DSB rejoining is strictly dependent on the integrity of the NHEJ repair system.

DNA Double Strand Break Repair: A Radiation Perspective

Antioxidants & Redox Signaling, 2013

Significance: Ionizing radiation (IR) can induce a wide range of unique deoxyribonucleic acid (DNA) lesions due to the spatiotemporal correlation of the ionization produced. Of these, DNA double strand breaks (DSBs) play a key role. Complex mechanisms and sophisticated pathways are available within cells to restore the integrity and sequence of the damaged DNA molecules. Recent Advances: Here we review the main aspects of the DNA DSB repair mechanisms with emphasis on the molecular pathways, radiation-induced lesions, and their significance for cellular processes. Critical Issues: Although the main characteristics and proteins involved in the two DNA DSB repair processes present in eukaryotic cells (homologous recombination and nonhomologous end-joining) are reasonably well established, there are still uncertainties regarding the primary sensing event and their dependency on the complexity, location, and time of the damage. Interactions and overlaps between the different pathways play a critical role in defining the repair efficiency and determining the cellular functional behavior due to unrepaired/miss-repaired DNA lesions. The repair pathways involved in repairing lesions induced by soluble factors released from directly irradiated cells may also differ from the established response mechanisms. Future Directions: An improved understanding of the molecular pathways involved in sensing and repairing damaged DNA molecules and the role of DSBs is crucial for the development of novel classes of drugs to treat human diseases and to exploit characteristics of IR and alterations in tumor cells for successful radiotherapy applications.

Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: The molecular choreography

Mutation Research/Reviews in Mutation Research, 2012

The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. ''Superfluous'' protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.

Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in γ-irradiated CHO cells

DNA Repair, 2010

The repair of DNA double-strand breaks (DSB) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and nonhomologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51Dknockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosometype CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al. DNA Repair 4, 782-792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2.

DNA Double-Strand Break Induction and Repair in Irradiated Lymphoblastoid, Fibroblast Cell Lines and White Blood Cells from ATM, NBS and Radiosensitive Patients

Strahlentherapie und Onkologie, 2007

Background and Purpose: DNA double-strand breaks (dsbs) in lymphoblastoid cell lines (LCLs), fibroblasts and white blood cells from healthy donors, cancer patients with and without late effects of grade 3-4 (RTOG) as well as donors with known radiosensitivity syndromes were examined with the aim to detect dsb repair ability as a marker for radiosensitivity. Material and Methods: LCLs from six healthy donors, seven patients with a heterozygous or homozygous genotype for ataxiatelangiectasia (ATM) and Nijmegen breakage syndrome (NBS), two patients with a late toxicity of grade 3-4 (RTOG), and one cell line with a ligase IV -/status and its parental cell line were examined. Furthermore, fibroblasts from patients with ATM, NBS, two healthy control individuals, and leukocytes from 16 healthy and 22 cancer patients including seven patients with clinical hypersensitivity grade 3 (RTOG) were examined. Cells were irradiated in vitro with 0-150 Gy. Initial damage as well as remaining damage after 8 and 24 h were measured using constant field gel electrophoresis. Results: In contrast to cells derived from patients homozygous for NBS, impaired dsb repair ability could be detected both in fibroblast and lymphoblastoid cells from ATM and ligase IV -/patients. The dsb repair ability of all 38 leukocyte cell lines (patients with grade 3-4 late effects and controls) was similar, whereas the initial damage among healthy donors was less. Conclusion: Despite showing a clinically elevated radiosensitivity after irradiation, the DNA repair of the patients with clinical hypersensitivity grade 3 (RTOG) appeared to be normal. Other mechanisms such as mutations, altered cell cycle or defective apoptosis could play a critical role toward determining radiosensitivity.

The type and yield of ionising radiation induced chromosomal aberrations depend on the efficiency of different DSB repair pathways in mammalian cells

Mutation research, 2008

In order to evaluate the relative role of two major DNA double strand break repair pathways, i.e., non-homologous end joining (NHEJ) and homologous recombination repair (HRR), CHO mutants deficient in these two pathways and the parental cells (AA8) were X-irradiated with various doses. The cells were harvested at different times after irradiation, representing G2, S and G1 phase at the time of irradiation, The mutant cell lines used were V33 (NHEJ deficient), Irs1SF, 51-D1 (HRR deficient). In addition to parental cell line (AA8), a revertant of V33, namely V33-155 was employed. Both types of mutant cells responded with increased frequencies of chromosomal aberrations at all recovery times in comparison to the parental and revertant cells. Mutant cells deficient in NHEJ were more sensitive in all cell stages in comparison to HRR deficient mutant cells, indicating NHEJ is the major repair pathway for DSB repair through out the cell cycle. Both chromosome and chromatid types of exchang...

Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes

DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo-or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.

Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells

DNA Repair, 2005

Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed ∼90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk cs mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position. Published by Elsevier B.V.

Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2

DNA Repair, 2008

Homologous recombination repair (HRR) Backup pathways DNA double strand breaks (DSBs) DNA Ligase IV Cell cycle Ionizing radiation (IR) Rad54 a b s t r a c t In higher eukaryotes DNA double strand breaks (DSBs) are repaired by homologous recombination (HRR) or non-homologous end joining (NHEJ). In addition to the DNA-PK dependent pathway of NHEJ (D-NHEJ), cells employ a backup pathway (B-NHEJ) utilizing Ligase III and PARP-1. The cell cycle dependence and coordination of these pathways is being actively investigated. We examine DSB repair in unperturbed G1 and G2 phase cells using mouse embryo fibroblast (MEF) mutants defective in D-NHEJ and/or HRR. WT and Rad54 −/− MEFs repair DSBs with similar efficiency in G1 and G2 phase. LIG4 −/− , DNA-PKcs −/− , and Ku70 −/− MEFs show more pronounced repair defects in G1 than in G2. LIG4 −/− /Rad54 −/− MEFs repair DSBs as efficiently as LIG4 −/− MEFs suggesting that the increased repair efficiency in G2 relies on enhanced function of B-NHEJ rather than HRR. In vivo and in vitro plasmid end joining assays confirm an enhanced function of B-NHEJ in G2. The results show a new and potentially important cell cycle regulation of B-NHEJ and generate a framework to investigate the mechanistic basis of HRR contribution to DSB repair.