Uno studio sferico del Gravity Assist (Principi di Astrodinamica Sferica) (original) (raw)
Nivola L'investigazione dello spazio (G. Altea)
The recent critical reappraisal of the work of Bernard Rudofsky has highlighted the originality of his multifaceted approach to architecture and to life in general. This paper examines his only architectural work completed between 1941 and 1962: the garden of his friend Tino Nivola’s house in Long Island, designed in 1949-50 in collaboration with Nivola himself, where Rudofsky put in practice the idea of the “open-air room” envisaged in his designs made in Italy with Gio Ponti during the Thirties and then in Brazil. While the architectural layout of the garden was done by Rudofsky, Nivola – later to became a prominent figure in architectural sculpture - contributed a series of murals and others details. A pivotal work in Rudofsky’s career, the Nivola garden represents a unique attempt at implanting themes and motifs from European Mediterraneism in an American habitat, but it also mirrors the insights of George Eckbo developed within the landscape architecture debate that took place ...
La Prattica della Sfera di Galileo edita da Buonardo Savi
Trattato della Sfera di Galileo Galilei, con alcune prattiche intorno à quella, e modo di fare la Figura Celeste e suoi Direttioni secondo la Via Rationale di Buonardo Savi, Roma, 1656 Galileo Galilei è stato la Fenice degl' ingegni de' tempi nostri, le cui sottilissime, & eruditissime compositioni, l'hanno arreso già immortale.... Buonardo Savi, 1656 Questo libretto ha catturato il mio interesse perchè presenta nelle sue "prattiche astronomiche" alcune paginette interessanti di gnomonica. Il fatto che fosse intestato a Galileo lo rendeva ancora più interessante, ma dopo alcune ricerche ho dovuto constatare che oltre all'orologio a pendolo, mirabilmente ricostruito oggi dall'I.P.S.I.A. "Galileo Galilei" di Castelfranco Veneto, nulla è dato sapere di gran che importante dal punto di vista gnomonico dalla penna del grande scienziato. Anche se questo trattetello della sfera è intestato a lui, le pagine che ci interessano sono sicuramente derivate, come Buonardo Savi stesso ci dice nella prefazione, da capitoli aggiunti al manoscritto originale, come le esercitazioni pratiche di cui ci occuperemo. E sicuramente sono un retaggio degli insegnamenti del grande Bonaventura Cavalieri, come si suppone anche in questa descrizione bibliografica dell'opera: Molti furono i dubbi sull'autenticità di questa opera sin dal suo inserimento nella prima edizione delle opere di Galilei, Bologna 1655-1656; il Viviani stesso che curò questa edizione di Bologna la riteneva apocrifa. Il problema deriva dal fatto che in quest'opera Galilei affermerebbe l'immobilità della Terra, fra l'altro con uno stile e delle argomentazioni che non gli erano proprie. Secondo Riccardi, il vero "Compendio della Sfera" è andato perduto e avanza delle perplessità sul fatto che fosse stato un "monaco peripatetico" a pubblicare questo scritto di Galileo pensando piuttosto ad un inganno per far ritenere che Galilei avesse cambiato idea. Il Davisi dal canto suo nell'avvertenza afferma che il manoscritto dettato da Galilei era in possesso di Scipione Satronchet che lo aveva affidato all'editore; lui stesso avrebbe
Meccanica quantistica e "lensing" gravitazionale
2015
La deflessione della luce in un campo gravitazionale e una delle prove sperimentali piu rilevanti della relativita generale. In questo contesto si discutono alcuni effetti della meccanica quantistica sulla propagazione dei fotoni in uno spazio-tempo curvo. In particolare si presentano le correzioni quantistiche del Modello Standard delle particelle elementari alla diffusione del fotone da una sorgente gravitazionale.
'Le meditazioni orbitali di Samantha Harvey'
La Balena Bianca. Rivista di Cultura Militante, 2025
È per movimenti circolari che procede la meditazione. Si parte dall'io, lo si prova a negare o superare, ma poi sempre all'io in qualche modo si torna, arricchiti nella vita quotidiana dalla relativizzazione dell'esperienza del sé. Immaginate di applicare questa ciclicità alla Terra tutta, più che all'ego individuale, e avrete un'idea di massima di cos'è Orbital di Samantha Harvey: libro vincitore del Booker Prize 2024, tradotto in italiano da Gioia Guerzoni per NNE. Una prosa poetica che dalla Terra parte e alla Terra torna, ruotandole intorno al ritmo di sedici orbite compiute da due astronaute, due astronauti e due cosmonauti che, riuniti nella stessa stazione spaziale internazionale, non smettono di interrogarsi sul pianeta che hanno di fronte -e, quindi, sui propri destini. Anche in lontananza, anche dallo spazio, la Terra è sempre presente a sé stessa, attraverso sei cervelli e dodici occhi che la mano sapiente dell'autrice inglese rende reciprocamente interconnessi. Le distinzioni lessicali da guerra fredda (astronauti vs. cosmonauti), attualizzate dalla guerra nemmeno più così fredda in corso negli ultimi anni, vengono infatti mantenute ma al tempo stesso sovvertite. Nella compagnia forzata imposta dalla missione spaziale -compagnia che è in fondo una solitudine irriducibile -viene a crearsi una «famiglia per aria» (p. 25) in cui la condivisione è, più che auspicata a livello etico-razionale, praticamente esperita: Tutto quello che abbiamo lo riutilizziamo e lo condividiamo. Non possiamo dividerci, questa è la verità. E non succederà perché non può essere. Beviamo la nostra urina riciclata. Respiriamo la stessa aria riciclata (p. 80). Nella versione originale, le ultime due frasi sono marcate da un each other battente che evidenzia con efficacia la reciprocità di questa condizione: «We drink each other's recycled urine. We breath each other's recycled air». Ma in fondo questo riciclo non caratterizza la vita umana anche sul livello del mare? Non siamo tutti sostenuti da un continuo scambio organico, immersi nell'atmosfera come
Rappresentazione dell’universo in tre dimensioni: le sfere armillari e altri strumenti scientifici
La voce di Hora. PUBBLICAZIONE DELL’ASSOCIAZIONE ITALIANA CULTORI DI OROLOGERIA ANTICA, 2021
Several astronomical instruments, made by many rings, have been invented and realized in Classical Antiquity to represent the celestial sphere, different models of the Universe or to observe the sky. In this paper I present a brief history of these objects and a classification of their different tipologies. Due to the limitation of space, I limited my description to the armillaries spheres made in Europe before the XVIIth century and I have not included other instruments with rings, like the universal equinoctial sundials. (NB The paper is in Italian)
GERBERTO E LE FISTULAE: TUBI ACUSTICI ED ASTRONOMICI
Gerbert of Aurillac wrote to Constantine of Fleury in 978 a letter to describe in detail the procedure to point the star nearest to the North celestial pole. This was made to align a sphere equipped with tubes to observe the celestial pole, the polar circles, the solstices and equinoxes. The use of tubes in astronomical observation is later reported by Alhazen in his treatise on optics (1011-1021). The description of pointing to the celestial pole indicates that the instrument must be accurately aligned with the true pole, materialized at that epoch by a star of fifth magnitude, at the limit of naked eye visibility, and then the instrument must remain fixed. Solstices and Equinoxes are points of the orbit of the Sun, so the sphere could be used as a tool for observing the Sun and probably determine the duration of the tropical year. This sphere was much more than a didactic tool, given the long procedure for the accurate alignement. Moreover "Rogatus a pluribus" (asked by his many students), Gerbert wrote a treatise on acoustic tubes (fistulae) in 980: Mensura Fistularum. He knew the difference in behavior of the fistulae compared with the acoustic strings, already studied by the Pythagoreans, and the treaty is intended to present the law that governs the length of the organ pipes in two octaves, compared to the corresponding acoustic strings. In terms of modern physics we know that acoustic tubes require an "end correction" to be tuned, which is proportional to the diameter of the tube. This proportionality is the same for every note. The mathematical law is simple, but Gerbert preferred to create a law in which the proportions of pipes and strings should be calculated through a series of fractions linked to the number 12 and its multiples.